Archive | April, 2009


9:33 pm
April 29, 2009
Print Friendly

Empowerment. Empowerment. Empowerment.

bob_baldwinWe hear a lot about empowerment. I believe the word is used too often and in too many situations, so much in fact that its meaning is beginning to drift.

Bored workers see empowerment as nothing more than another hollow platitude espoused by top management during the current productivity campaign.

Old-style harried supervisors think of empowerment as having to give up some power, responsibility, authority, or control to workers, making them more difficult to boss around.

Cost-pressured managers think of empowerment as a way to offload management responsibilities onto the workforce so they can “re-engineer” a few more middle level people out the doo.

One presumptuous editor thinks of empowerment as providing maintenance and reliability workers with the tools and technologies discussed and advertised in his magazine.

I was disappointed when I found that the dictionary simply lists empowerment as the verb “to invest with legal power; to authorize.”

Is that all there is? I was hoping for more, something to justify the use of the word empowerment in the notes I took during a recent reliability-centered maintenance (RCM) workshop. The workshop, sponsored by the Society for Maintenance and Reliability Professionals, was led by John Moubray, author of this month’s Viewpoint article.

In one instance, Moubray spoke of the need for empowerment to implement the recommendations of the RCM analysis. In that case, empowerment indeed had to do with authorization.

My other note on empowerment dealt with a common scenario for participants in RCM review groups that analyze plant equipment. These groups ideally consist of an operator, a maintainer, an operations supervisor, a maintenance supervisor, and a facilitator. Time and again, Moubray says, operators leave the RCM experience noting that for the first time, they fully understand how the machine they operate really works. He also states that maintainers leave the RCM experience noting that they finally understand what operating requirements are all about. They are both now fully empowered to do the job for which they are being paid.

Once workers have been empowered by real knowledge and current information, all you have to do is get out of their way and watch their progress. MT

Thanks for stopping by,


Continue Reading →


8:09 pm
April 29, 2009
Print Friendly

Going Wireless: Wireless Technology Is Ready For Industrial Use

Wireless works in a plant, but you’ll want to be careful regarding which “flavor” you choose

Wireless Technology now provides secure, reliable communication for remote field sites and applications where wires cannot be run for practical or economic reasons. For maintenance purposes, wireless can be used to acquire condition monitoring data from pumps and machines, effluent data from remote monitoring stations, or process data from an I/O system.

For example, a wireless system monitors a weather station and the flow of effluent leaving a chemical plant. The plant’s weather station is 1.5 miles from the main control room. It has a data logger that reads inputs from an anemometer to measure wind speed and direction, a temperature gauge and a humidity gauge. The data logger connects to a wireless remote radio frequency (RF) transmitter module, which broadcasts a 900MHz, frequency hopping spread spectrum (FHSS) signal via a YAGI directional antenna installed at the top of a tall boom located beside the weather station building. This posed no problem.

However, the effluent monitoring station was thought to be impossible to connect via wireless. Although the distance from this monitoring station to the control room is only one-quarter mile, the RF signal had to pass through a four-story boiler building. Nevertheless, the application was tested before installation, and it worked perfectly. The lesson here is that wireless works in places where you might think it can’t. All you have to do is test it.

There are many flavors of wireless, and an understanding is needed to determine the best solution for any particular application.Wireless can be licensed or unlicensed, Ethernet or serial interface, narrow band or spread spectrum, secure or open protocol,Wi-fi…the list goes on. This article provides an introduction to this powerful technology.

The radio spectrum
The range of approximately 9 kilohertz (kHz) to gigahertz (GHz) can be used to broadcast wireless communications. Frequencies higher than these are part of the infrared spectrum, light spectrum, X-rays, etc. Since the RF spectrum is a limited resource used by television, radio, cellular telephones and other wireless devices, the spectrum is allocated by government agencies that regulate what portion of the spectrum may be used for specific types of communication or broadcast.

In the United States, the Federal Communications Commission (FCC) governs the allocation of frequencies to non-government users. FCC has limited the use of Industrial, Scientific, and Medical (ISM) equipment to operate in the 902-928MHz, 2400-2483.5MHz and 5725-5875MHz bands,with limitations on signal strength, power, and other radio transmission parameters. These bands are known as unlicensed bands, and can be used freely within FCC guidelines. Other bands in the spectrum can be used with the grant of a license from the FCC. (Editor’s Note: For a quick definition of the various bands in the RF spectrum, as well as their uses, log on to: http://encyclopedia.thefreedictionary. com/radio+frequency )

Licensed or unlicensed
A license granted by the FCC is needed to operate in a licensed frequency. Ideally, these frequencies are interference-free, and legal recourse is available if there is interference. The drawbacks are a complicated and lengthy procedure in obtaining a license, not having the ability to purchase off-the-shelf radios since they must be manufactured per the licensed frequency, and, of course, the costs of obtaining and maintaining the license.


License-free implies the use of one of the frequencies the FCC has set aside for open use without needing to register or authorize them. Based on where the system will be located, there are limitations on the maximum transmission power. For example, in the U.S., in the 900MHz band, the maximum power may be 1 Watt or 4 Watts EIRP (Effective Isotropic Radiated Power).

The advantages of using unlicensed frequencies are clear: no cost, time or hassle in obtaining licenses; many manufacturers and suppliers who serve this market; and lower startup costs, because a license is not needed. The drawback lies in the idea that since these are unlicensed bands, they can be “crowded” and, therefore, may lead to interference and loss of transmission. That‘s where spread spectrum comes in. Spread spectrum radios deal with interference very effectively and perform well, even in the presence of RF noise.

Spread spectrum systems
Spread Spectrum is a method of spreading the RF signal across a wide band of frequencies at low power, versus concentrating the power in a single frequency as is done in narrowband channel transmission. Narrowband refers to a signal which occupies only a small section of the RF spectrum, whereas wideband or broadband signal occupies a larger section of the RF spectrum. The two most common forms of spread spectrum radio are frequency hopping spread spectrum (FHSS), and direct sequence spread spectrum (DSSS). Most unlicensed radios on the market are spread spectrum.

As the name implies, frequency hopping changes the frequency of the transmission at regular intervals of time. The advantage of frequency hopping is obvious: since the transmitter changes the frequency at which it is broadcasting the message so often, only a receiver programmed with the same algorithm would be able to listen and follow the message. The receiver must be set to the same pseudo-random hopping pattern, and listen for the sender’s message at precisely the correct time at the correct frequency. Fig. 1 shows how the frequency of the signal changes with time. Each frequency hop is equal in power and dwell time (the length of time to stay on one channel). Fig. 2 shows a two dimensional representation of frequency hopping, showing that the frequency of the radio changes for each period of time. The hop pattern is based on a pseudo random sequence.


DSSS combines the data signal with a higher data-rate bit-sequence-also known as a ‘chipping code’-thereby “spreading” the signal over greater bandwidth. In other words, the signal is multiplied by a noise signal generated through a pseudo-random sequence of 1 and -1 bits. The receiver then multiplies the signal by the same noise to arrive at the original message (since 1 x 1 = 1 and -1 x -1 = 1).

When the signal is “spread,” the transmission power of the original narrowband signal is distributed over the wider bandwidth, thereby decreasing the power at any one particular frequency (also referred to as low power density). Fig. 3 shows the signal over a narrow part of the RF spectrum. In Fig. 4, that signal has been spread over a larger part of the spectrum, keeping the overall energy the same, but decreasing the energy per frequency. Since spreading the signal reduces the power in any one part of the spectrum, the signal can appear as noise. The receiver must recognize this signal and demodulate it to arrive at the original signal without the added chipping code. FHSS and DSSS both have their place in industry and can both be the “better” technology based on the application. Rather than debating which is better, it is more important to understand the differences, and then select the best fit for the application. In general, a decision involves:

  • Throughput
  • Colocation
  • Interference
  • Distance
  • Security

Throughput is the average amount of data communicated in the system every second. This is probably the first decision factor in most cases. DSSS has a much higher throughput than FHSS because of a much more efficient use of its bandwidth and employing a much larger section of the bandwidth for each transmission. In most industrial remote I/O applications, the throughput of FHSS is not a problem.

As the size of the network changes or the data rate increases, this may become a greater consideration. Most FHSS radios offer a throughput of 50-115 kbps for Ethernet radios.Most DSSS radios offer a throughput of 1-10 Mbps. Although DSSS radios have a higher throughput than FHSS radios, one would be hard pressed to find any DSSS radios that serve the security and distance needs of the industrial process control and SCADA market. Unlike FHSS radios, which operate over 26MHz of the spectrum in the 900MHz band (902-928MHz), and DSSS radios, which operate over 22MHz of the 2.4GHz band, licensed narrow band radios are limited to 12.5kHz of the spectrum.Naturally, as the width of the spectrum is limited, the bandwidth and throughput will be limited as well.Most licensed frequency narrowband radios offer a throughput of 6400 to 19200 bps.

Collocation refers to having multiple independent RF systems located in the same vicinity. DSSS does not allow for a high number of radio networks to operate in close proximity as they are spreading the signal across the same range of frequencies. For example, within the 2.4GHz ISM band, DSSS allows only three collocated channels. Each DSSS transmission is spread over 22MHz of the spectrum, which allows only three sets of radios to operate without overlapping frequencies.

FHSS, on the other hand, allows for multiple networks to use the same band because of different hopping patterns. Hopping patterns which use different frequencies at different times over the same bandwidth are called orthogonal patterns. FHSS uses orthogonal hopping routines to have multiple radio networks in the same vicinity without causing interference with each other. That is a huge plus when designing large networks, and needing to separate one communication network from another. Many lab studies show that up to 15 FHSS networks may be collocated, whereas only 3 DSSS networks may be collocated. Narrowband radios obviously cannot be collocated as they operate on the same 12.5MHz of the spectrum.

Interference is RF noise in the vicinity and in the same part of the RF spectrum. A combining of the two signals can generate a new RF wave or can cause losses or cancellation in the intended signal. Spread Spectrum in general is known to tolerate interference very well, although there is a difference in how the different flavors handle it.When a DSSS goingwireless4receiver finds narrowband signal interference, it multiplies the received signal by the chipping code to retrieve the original message. This causes the original signal to appear as a strong narrow band; the interference gets spread as a low power wideband signal and appears as noise, and thus can be ignored.

In essence, the very thing that makes DSSS radios spread the signal to below the noise floor is the same thing that allows DSSS radios to ignore narrowband interference when demodulating a signal. Therefore, DSSS is known to tolerate interference very well, but it is prone to fail when the interference is at a higher total transmission power, and the demodulation effect does not drop the interfering signal below the power level of the original signal.

Given that FHSS operates over 83.5MHz of the spectrum in the 2.4GHz band, producing high power signals at particular frequencies (equivalent to having many short synchronized bursts of narrowband signal) it will avoid interference as long as it is not on the same frequency as the narrowband interferer.Narrowband interference will, at most, block a few hops which the system can compensate for by moving the message to a different frequency. Also, the FCC rules require a minimum separation of frequency in consecutive hops, and therefore the chance of a narrowband signal interfering in consecutive hops is minimized.

When it comes to wideband interference, DSSS is not so robust. Since DSSS spreads its signal out over 22MHz of the spectrum all at once at a much lower power, if that 22MHz of the spectrum is blocked by noise or a higher power signal, it can block 100% of the DSSS transmission, although it will only block 25% of the FHSS transmission. In this scenario, FHSS will lose some efficiency, but not be a total loss.

In licensed radios the bandwidth is narrow, so a slight interference in the range can completely jam transmission. In this case, highly directional antennas and band pass filters may be used to allow for uninterrupted communication, or legal action may be pursued against the interferer.

802.11 radios are more prone to interference since there are so many readily available devices in this band. Ever notice how your microwave interferes with your cordless phone at home? They both operate in the 2.4GHz range, the same as the rest of 802.11 devices. Security becomes a greater concern with these radios.

If the intended receiver of a transmitter is located closer to other transmitters and farther from its own partner, it is known as a Near/Far problem. The nearby transmitters can potentially drown the receiver in foreign signals with high power levels. Most DSSS systems would fail completely in this scenario. The same scenario in a FHSS system would cause some hops to be blocked but would maintain the integrity of the system. In a licensed radio system, it would depend on the frequency of the foreign signals. If they were on the same or close frequency, it would drown the intended signal, but there would be recourse for action against the offender unless they have a license as well.

Distance is closely related to link connectivity, or the strength of an RF link between a transmitter and a receiver, and at what distance they can maintain a robust link. Given that the power level is the same, and the modulation technique is the same, a 900MHz radio will have higher link connectivity than a 2.4GHz radio. As the frequency in the RF spectrum increases, the transmission distance decreases if all other factors remain the same. The ability to penetrate walls and object also decreases as the frequency increases.Higher frequencies in the spectrum tend to display reflective properties. For example, a 2.4GHz RF wave can bounce off reflective walls of buildings and tunnels. Based on the application, this can be used as an advantage to take the signal farther, or it may be a disadvantage causing multipath, or no path, because the signal is bouncing back.

FCC limits the output power on spread spectrum radios. DSSS consistently transmits at a low power, as discussed above, and stays within the FCC regulation by doing so. This limits the distance of transmission for DSSS radios, and thus this may be a limitation for many of the industrial applications. FHSS radios, on the other hand, transmit at high power on particular frequencies within the hopping sequence, but the average power on the spectrum is low, and therefore can meet with the regulations. Since the actual signal is transmitting at a much higher power than the DSSS, it can travel further.Most FHSS radios are capable of transmitting over 15 miles, and longer distances with higher gain antennas.

802.11 radios, although available in both DSSS as well as FHSS, have a high bandwidth and data rate, up to 54Mbps (at the time of this publication). But it is important to note that this throughput is for very short distances, and downgrades very quickly as the distance between the radio modems increases. For example, a distance of 300 feet would drop the 54Mbps rate down to 2Mbps. This makes this radio ideal for a small office or home application, but not for many industrial applications where there is a need to transmit data over several miles.

Since narrowband radios tend to be a lower frequency, they are a good choice in applications where FHSS radios cannot provide adequate distance. A proper application for narrow band licensed radios is when there is a need to use a lower frequency to either travel over a greater distance, or be able to follow the curvature of the earth more closely and provide link connectivity in areas where line of sight is hard to achieve.

Since DSSS signals run at such low power, the signals are difficult to detect by intruders. One strong feature of DSSS is its ability to decrease the energy in the signal by spreading the energy of the original narrowband signal over a larger bandwidth, thereby decreasing the power spectral density. In essence, this can bring the signal level below the noise floor, thereby making the signal “invisible” to would-be intruders. On the same note, however, if the chipping code is known or is very short, then it is much easier to detect the DSSS transmission and retrieve the signal since it has a limited number of carrier frequencies. Many DSSS systems offer encryption as a security feature, although this increases the cost of the system and lowers the performance, because of the processing power and transmission overhead for encoding the message.

For an intruder to successfully tune into a FHSS system, he needs to know the frequencies used, the hopping sequence, the dwell time and any included encryption. Given that for the 2.4GHz band the maximum dwell time is 400ms over 75 channels, it is almost impossible to detect and follow a FHSS signal if the receiver is not configured with the same hopping sequence, etc. In addition, most FHSS systems today come with high security features such as dynamic key encryption and CRC error bit checking.

Today,Wireless Local Area Networks (WLAN) are becoming increasingly popular. Many of these networks use the 802.11 standard, an open protocol developed by IEEE.Wi-fiis a standard logo used by the Wireless Ethernet Compatibility Alliance (WECA) to certify 802.11 products. Although industrial FHSS radios tend to not be Wi-fi, and therefore not compatible with these WLANs, there may be a good chance for interference due to them operating in the same bandwidth. Since most Wi-fiproducts operate in the 2.4 or 5GHz bands, it may be a good idea to stick with a 900MHz radio in industrial applications, if the governing body allows this range (Europe allows only 2.4GHz, not 900MHz). This will also provide an added security measure against RF sniffers (a tool used by hackers) in the more popular 2.4 band.

Security is one of the top issues discussed in the wireless technology sector. Recent articles about “drive-by hackers” have left present and potential consumers of wireless technology wary of possible infiltrations. Consumers must understand that 802.11 standards are open standards and can be easier to hack than many of the industrial proprietary radio systems.

The confusion about security stems from a lack of understanding of the different types of wireless technology. Today, Wi-fi(802.11a, b, and g) seems to be the technology of choice for many applications in the IT world, homes and small offices. 802.11 is an open standard in which many vendors, customers and hackers have access to the standard.While many of these systems have the ability to use encryption like AES and WEP, many users forget or neglect to enable these safeguards which would make their systems more secure.Moreover, features like MAC filtering can also be used to prevent unauthorized access by intruders on the network. Nonetheless, many industrial end users are very wary about sending industrial control information over standards that are totally “open.”

So, how do users of wireless technology protect themselves from infiltrators? One almost certain way is to use non- 802.11 devices that employ proprietary protocols that protect networks from intruders. Frequency hopping spread spectrum radios have an inherent security feature built into them. First, only the radios on the network that are programmed with the “hop pattern” algorithm can see the data. Second, the proprietary, non-standard, encryption method of the closed radio system will further prevent any intruder from being able to decipher that data.

The idea that a licensed frequency network is more secure may be misleading. As long as the frequency is known, anyone can dial into the frequency, and as long as they can hack into the password and encryption, they are in. The added security benefits that were available in spread spectrum are gone since licensed frequencies operate in narrowband. Frequency hopping spread spectrum is by far the safest, most secure form of wireless technology available today.

Mesh radio networks
Mesh radio is based on the concept of every radio in a network having peer-topeer capability. Mesh networking is becoming popular since its communication path has the ability to be quite dynamic. Like the worldwide Web, mesh nodes make and monitor multiple paths to the same destination to ensure that there is always a backup communication path for the data packets.

There are many concerns that developers of mesh technology are still trying to address, such as latency and throughput. The concept of mesh is not new. The internet and phone service are excellent mesh networks based in a wired world. Each node can initiate communication with another node and exchange information.

In conclusion, the choice of radio technology to use should be based on the needs of the application. For most industrial process control applications, proprietary protocol license-free frequency hopping spread spectrum radios (Fig. 5) are the best choice because of lower cost and higher security capabilities in comparison to licensed radios.When distances are too great for a strong link between FHSS radios with repeaters, then licensed narrowband radios should be considered for better link connectivity. The cost of licensing may offset the cost of installing extra repeaters in a FHSS system.

As more more industrial applications require greater throughput, networks employing DSSS that enable TCP/IP and other open Ethernet packets to pass at higher data rates will be implemented. This is a very good solution where PLCs (Programmable Logic Controllers), DCS (Distributed Control Systems) and PCS (Process Control Systems) need to share large amounts of data with one another or upper level systems like MES (Manufacturing Execution Systems) and ERP (Enterprise Resource Planning) systems.

When considering a wireless installation, check with a company offering site surveys that allow you to install radios at remote locations to test connectivity and throughput capability. Often this is the only way to ensure that the proposed network architecture will satisfy your application requirements. These demo radios also let you look at the noise floor of the plant area, signal strength, packet success rate and the ability to identify if there are any segments of the license free bandwidth that are currently too crowded for effective communication throughput. If this is the case, then hop patterns can be programmed that jump around that noisy area instead of through it. MT

Gary Mathur is an applications engineer with Moore Industries-International, in North Hills, CA. He holds Bachelor’s and Masters degrees in Electronics Engineering from Agra University, and worked for 12 years with Emerson Process Management before joining Moore. For more information on the products referenced in this article, telephone: (818) 894-7111; e-mail:

Continue Reading →


4:34 pm
April 1, 2009
Print Friendly

Capacity Assurance Marketplace

sol-spotlight_abbFast-Response pH Sensor For Industrial Applications

ABB now offers the Endura TBX587 Retractable pH sensor that targets 1″ NPT process connections found in sample lines in a range of industrial applications. This convenient new system incorporates a number of innovative design features, including a temperature compensation element at the tip of the sensor to provide response times up to 6x faster then conventional gel-filled pH sensors. The Endura TBX587 is based on ABB’s highly successful solid state, Next Step Reference design that stands up to the type of chemical poisoning and build-up often found in strong chemical processes and slurries. 316 Stainless hardware is standard, with options for Hastelloy and Titanium metallic fittings.

Warminster, PA

For more info, enter 35 at
sol_spotlight_skfRugged And Simplified Machine Monitoring

The SKF Machine Condition Advisor (MCA) is a rugged, easy-to-use, hand-held device that measures vibration signals and temperature simultaneously to indicate machine health or bearing damage, and provides early warning of machine problems before a costly breakdown occurs. It simultaneously measures vibration signals from 10 to 1000 Hz and temperature from -20 to 200 C (-4 to 392 F) and displays the values in Metric or English on a bright backlit LCD. The SKF MCA is ergonomically designed and uses an environmentally friendly rechargeable Lithium ion battery. An optional external vibration sensor with a magnet provides convenience for hard-to-reach surfaces and more repeatable and accurate measurements.

SKF Reliability Systems
San Diego, CA

For more info, enter 36 at
sol_spotlight_eagleburgmannNew API 682 Category 1 Seal Without Compromise

EagleBurgmann’s new APItex™ series seal comprises single and dual pusher type seals in accordance with “Category 1” of API 682, 3rd Edition/ISO 21049 for the chemical industry. According to the manufacturer, the specifications of “Category 1” were taken fully into account in the design of the new APItex line. Its operating limits are 360 PSIG (25 bar), -40 F to +500 F (-40 C to 260 C). Features include shrink-fitted seal faces, solid seats, product-protected springs, reverse pressurization capability and pump ring.

Houston, TX

For more info, enter 37 at
Decontactor Series Switch Rated Plugs and Receptacles

Meltric has announced the availability of its new 2009 product catalog featuring Decontactor Series switch rated plugs, receptacles and connectors. This new 224-page catalog also provides information about Meltric’s other plug and receptacle product offerings including some new hazardous duty rated devices, PF high ampacity devices (up to 600A), and a wide variety of Multipin devices (up to 37 contacts).

Meltric Corporation
Franklin, WI

For more info, enter 38 at
sol_spotlight_mapconRevolutionary Wireless Software Has Your Back

Mapcon’s new Hybrid PDA Wireless Software, Pocket-Maint™ Wireless, is a companion to the company’s powerful Maintenance Management Software MAPCON® Professional. The new Hybrid product will automatically save work to a database on a PDA when a wireless signal is lost. Upon re-connection to a wireless signal, the user will be able to upload all the saved data to prevent data loss. During wireless signal loss the user will still be able to create Work Orders, issue parts, create Work Requests and more! In addition to the new Hybrid wireless capabilities, PocketMaint Wireless has improved lookups. Lookups can be customized, sorted or searched by any column, making it easier for users to find valuable information.

Mapcon Technologies Inc.
Clive, IA

For more info enter 39 at
SEL arc flash detectionMinimize Dangerous Arc-Fault Energy

Schweitzer Engineering Laboratories’ new arc-flash detection (AFD) relay provides fully automatic protection against arc-flash events. The SEL-751A Feeder Protection Relay uses fiber-optic, arc-flash light sensors to detect the light created by an arc-flash event. To prevent false tripping, the SEL-751A looks for an overcurrent that coincides with the light flash. When both conditions are met, the AFD solution sends a trip signal to the circuit breaker in as fast as 2 ms. This fast tripping significantly reducing the damage-causing energy released by the arc-flash event.

Schweitzer Engineering Laboratories, Inc. (SEL)
Pullman, WA

For more info, enter 40 at
Guaranteed Rapid-Ship Cylinder Program

Numatics, a leading manufacturer of fluid power products, has introduced a 2-day guaranteed shipping program for pneumatic cylinders. The program covers the Numatics A Series N.F.P.A. interchangeable cylinder line and its M Series non-repairable round body air cylinder line. According to the company, compared to other rapid shipping offerings, the Numatics 2-day shipping program provides higher guaranteed quantity availability. It guarantees to ship a quantity of 10 or less cylinders for all part numbers (generated from the applicable A and M Series how-to-order pages) in 2 days or less, or it pays for the shipping.

Numatics, A Division of Emerson
Novi, MI

For more info, enter 41 at

Continue Reading →


6:00 am
April 1, 2009
Print Friendly

Utilities Manager: Learn and Prepare


Jane Alexander, Editor-In-Chief

“Energy is wealth,” says Christopher Russell, energy consultant and author of Industrial Energy Harvest. “Fuels and power are forms of currency.”






The sooner you learn how these and other energy facts of life impact your operations, the better. That’s why you can’t afford to miss this upcoming opportunity to hear from Russell in person. He, along with a number of other noted energy experts from across the country, will be among the featured speakers at ENERGY SUMMIT 09, in Grand Rapids, MI, on Thursday, June 25. Attendees can count on learning plenty at this exciting conference—including new ways to reduce their energy costs and how to prepare for looming carbon regulations. The information-packed event runs from 7:30 a.m. until 4:30 p.m. at the Eberhard Center, on the downtown campus of Grand Valley State University (GVSU).

Russell’s presentation will “connect the dots” between energy use and business performance. It’s based on his extensive experience working with corporate energy managers, utilities, trade associations and government agency energy programs.

Other speakers in the morning sessions and afternoon workshops will focus on energy use in commercial and manufacturing facilities, how to prepare for emerging carbon caps and trade markets and the growing use of renewable energy sources. Topics will include efficiencies in lighting, compressed air, pumping, steam and HVAC systems, as well as fuel switching, waste reduction, process changes and leak reduction, to name but a few.

Another key presenter will be Peter Garforth of Garforth International, which has offices in Toledo, OH and Brussels, Belgium. Garforth, a renowned expert on integrated energy planning, will explain the approaches that allow entire corporations—and even entire communities—to achieve breakthrough reductions in energy use and greenhouse gas creation and simultaneously enhance competitiveness and market attractiveness. Garforth was formerly head of Strategy at Owens Corning where he initiated a global program that has yielded tens of million of dollars in energy productivity.

0409-um-energy_img2A West Michigan company that is one of a handful developing carbon credits nationwide will also be on the conference agenda. Dr. David Armstrong of Viability, LLC will talk about the role that carbon credits play in funding energy efficiency and renewable energy projects. Viability identifies financial incentives for companies, such as federal and state grants, tax credits, carbon credits and renewable energy credits.

Attendees will gain an understanding of carbon credits and how they can be used to offset standards, thereby avoiding penalties or create income by selling excess credits to other firms. Impending regulation is going to put penalties in place for those exceeding carbon emission standards as a measure to control climate change. Europe, Canada, Japan and most other industrialized countries have established standards to meet emission limits arising from the 1997 Kyoto Protocol. The U.S. is expected to announce its climate protection and carbon policies this fall. Since 2005, the European Union has been using a cap-and-trade system that sets a ceiling limit for overall emissions associated with a system for buying and selling credits as needed to meet the limits.

The carbon regulations are a response to limit manmade climate change through reducing CO2 emissions and five other greenhouse gases—methane (CH4), nitrous oxide (NOx), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs) and sulfur hexafluoride (SF6). Going forward, companies can reduce their carbon footprint by reducing energy consumption and switching to clean and renewable fuel sources. To do so, however, large energy users will need to aggressively manage comprehensive energy efficiency programs, implement new technologies and use more clean and renewable energy sources.

Other speakers are expected from the U.S. Department of Energy, the American Council for Energy Efficient Economy and The Right Place, a regional economic development organization. They will be joined by presenters and exhibitors from Armstrong International, Baldor Dodge Reliance, Sun Chemical, Azon USA, the Michigan Energy Office, the Technical Energy Performance Group, Structure- Tec, Hatch Corporation and Sullair, among others. ENERGY SUMMIT 09 is being coordinated by Blue Strategies Group, in partnership with Maintenance Technology magazine. Blue Strategies is forming an educational foundation to promote knowledge about energy, innovation and market diversification. For more information, call 269.352.4583, or visit A full conference agenda will be available on the Website by April 30.

Continue Reading →


6:00 am
April 1, 2009
Print Friendly

Utilities Manager: Payback From Compressed Air Heat Recovery Systems

Compressed air, considered to be the “4th Utility,” is necessary in most manufacturing plants. The generation of compressed air requires large amounts of energy and can account for up to 10% of a plant’s total energy costs. Up to 93% of the energy required to compress air is converted to heat energy. By recovering and redirecting this heat, some of the operating costs associated with compressed air can be offset. Due to their operating principles and design, lubricated rotary screw air compressors are highly suited to the recovery of the heat of compression. In such units, this heat is removed by fl ooding the compression chamber with a lubricating fl uid. The fl uid is then separated from the compressed air and cooled by the use of an air-cooled heat exchanger. Additional heat can be recovered from the compressed air aftercooler. Cooling air fl ow is generated by the compressor package cooling fan. While water-cooled models are available, the recovery of this heat is more costly and complicated. The amount of heat recovered can vary with heat exchanger effectiveness but is typically 80-90%. Hot air recovered from the compressor can be from 35 F to 50 F higher than ambient. Heat recovery and—subsequently—energy savings are reduced when a compressor is operating at less than full capacity.

Applications abound
There are many different applications for recovered heat of compression. Each offers unique savings opportunities, as well as installation considerations and investment. Potential applications include the following:

0409-payback_img1Preheated make-up air… A preheated make-up air application (see Fig. 1) involves ducting the compressor package inlet outside the building. The outside air is heated as it is used for cooling and exhausted into the space surrounding the compressor. For every cubic foot of air pulled in by the heat recovery system, a cubic foot of air that would have infi ltrated the building at outside temperature is eliminated. Savings are realized because the plant’s primary heating system does not have to heat the air brought into the building by the heat recovery system.

This application can yield signifi cant savings and a short payback period since installation costs are minimized. No extensive ductwork or booster fans are required to connect to the plant’s primary heating system. Additionally, a higher fl ow fan may not be required in the compressor package. In colder environments, care must be taken so that the temperature of the outside air drawn into the compressor package is not so low that it will cause the air or moisture in the lines to freeze. Heat recovery systems are available that can automatically recirculate warm air to maintain a constant temperature inside a compressor package. This functionality also can provide a compressor with the ability to operate in unheated spaces, as well as maintain a more comfortable exhaust temperature.

Supplementary heating… A heat recovery system can also be used to supplement a plant’s primary heating system (see Fig. 2). In this instance, it is desirable for the air to be heated to a higher temperature than in a preheated make-up air application. This type of installation may require more extensive ductwork to distribute the heated air. Consideration must be given to the compressor package cooling fan. Extensive ductwork may necessitate a higher-fl ow fan or downstream booster fans.

As with a preheated make-up air installation, use of a thermostatically controlled heat recovery system drawing in outside air can increase savings by reducing infi ltration while still providing usable heat. A system without this level of control may not be able to heat the outside air to a temperature suffi cient for space heating.

0409-payback_img2Process heating… Recovered heat of compression may be used in process heating such as parts drying and boiler preheating. A benefi t to this application is the high rate of return due to the yearround heat recovery. This also can provide opportunity for heat recovery in warm climates. One installation consideration is proximity of the compressor to the point of usage. In addition to minimizing heat loss through ductwork, the cost of ductwork and booster fans will be minimized by placing the compressor close to the point of use.

In a heating or preheated make-up air system there are instances in which it is desirable to reject the recovered heat outdoors. This can be accomplished by use of additional ductwork and manually actuated dampers. It is possible to fabricate or purchase a system which will automatically utilize or reject the recovered heat of compression based on building and outside conditions.

0409-payback_img3Calculating savings
Calculating potential savings and payback time from recovering heat of compression can vary depending on compressor size, operating conditions, local energy rates, use of the recovered heat, location and initial investment. The plot in Fig. 3 details savings potential based on energy cost and compressor size.

As shown in Fig. 3, a 300 HP compressor can generate 12,378 BTU/minute. This represents 7.42 therms/hour of usable heat that is worth $3710 per 1000 hours of compressor operation at $0.50/therm. Annual heating cost savings of up to $14,840 easily can be realized. These savings are achieved without negative impact to the compressor’s cooling effi ciency.

As energy costs continue to rise, utilizing recovered heat from the production of compressed air becomes more attractive—much more attractive! While systems can be fi tted to existing machines, the best time to confi gure a heat recovery system is upon the purchase and installation of new and replacement equipment.

Jeremy Sickmiller is a senior engineer with Sullair Corporation, based in Michigan City, IN. E-mail:

Continue Reading →


6:00 am
April 1, 2009
Print Friendly

Utilities Manager: Where Did the Promised Savings Go?

0409-um-savings_ing1Reducing energy use is an important economic decision that should be based on sound financial data, measurements and calculations. Most businesses, though, are making economic decisions based on inaccurate (often inflated) dollar savings projections. Thus, the period needed to recoup their investment is much longer than they have been told. Let’s look at how this happens.

Most energy-saving companies, consultants and government entities use an “average cost per kilowatt-hour (kWh)” to calculate dollar savings for their energy projects. The building owner is told that the “average cost per kWh” times the number of kWh saved is your projected dollar savings. On its face, this is a reasonable and traceable method. In reality, however, it can grossly overstate  the savings.

There are a variety of ways to derive an “average cost per kWh.” Such numbers can come from utilities, government statistics or from dividing the cost—or some portion of the cost—of a bill(s) by the number of kWh used.

As an example, we’ll take a monthly bill from one of our clients that is on the PECO Energy Company (Exelon) High Tension (HT) electricity tariff.

  • This Exelon Website tells us the average price for the PECO HT rate was $0.0505/kWh in 2007.
  • This U.S. Energy Information Agency Website tells us that the average price of electricity to commercial customers in Pennsylvania was about $0.089/kWh in September 2006.
  • If we divide the total cost of the September 2006 bill of $25,012 for our client’s facility by the number of kWh used that month (265,000), we come up with a cost of $0.0944/kWh.


If we reduce the kWh use of this building in this month (September 2006) by 25%, or 66,250 kWh, we come up with the dollar savings calculations using the three “average costs per kWh” numbers shown in Table I.

Any of these three numbers is commonly used to calculate savings. The problem is that they don’t correspond to the actual savings our client will realize.

One reason is that the amount of money that an energy reduction project will save depends primarily on the number of kilowatt-hours of use (kWh) and the kilowatts of demand (KW) reduced each month and throughout the year—not just the kWh reduced. Actual dollar savings depend on how these two are linked through variables such as winter, summer, heating, demand ratchets and rate blocks, just to name a few. Some commercial electricity tariffs are mind-boggling, containing 30 or 40 or more independent and linked variables. It is these complex rate structures that determine your bills and savings.

Research, model and verify
If you want to accurately determine financial savings, you must first research, model and verify the formulae for the rate structures that comprise the applicable tariff. That way, when you plug in the kWh and KW numbers for the month—along with other numbers such as power factor, sales tax, energy efficiency surcharges, etc.—you come up with the same cost as the utility for that month and tariff.

In our example, we’ve modeled the tariff and already know the kWh, KW and cost (and other variables) of the monthly bill. To see the real savings from your energy reduction effort, enter the reduced kWh values into our algorithm of the tariff and calculate the actual bill. The difference between the bill without the kWh reduction and the bill that reflects the kWh reduction is your actual savings (in real life, we would calculate a historical baseline cost for that month and subtract the current month bill from the baseline cost to calculate the real savings). As shown in Table II, we can now compare the “savings” from the three average costs per kWh to the actual reduction calculated from the model of the tariff.

Overestimating savings
Why does simply using average cost per kWh usually lead to overestimation of savings? If we chart the algorithms for this tariff, we can see how all the interlocked variables and rate block costs actually contribute to the bill. This data in Fig. 1 shows the different cost blocks produced by the example facility with its unique kWh use and KW demand relative to the PECO HT tariff (every building uses different amounts of electricity and its interactions with the rate will be different).


Because of the complexity of the interactions between kWh and KW, we can see that there are three different pricing blocks for kWh use. The first block of use is charged at about $0.18/kWh while additional blocks cost much less. Note that this first block accounts for $17,219 of the $25,012 bill.


Here’s the million-dollar question. If we reduce kWh use by 25%, from which blocks did the dollar reductions come? The answer is shown in Fig. 2. In this example—as it is in many cases—reductions are weighted toward the less expensive kWh blocks. Therefore, if most of your kWh reductions come from the block priced at $0.03/kWh, your actual savings will be much less than if you use an “average cost per kWh” of $0.089/kWh.

Businesses need and deserve accurate data and numbers upon which to make sound economic decisions. That’s why it is so important for you to remember that actual dollar savings depend on the structure of the tariff and the electricity consumption of the facility in question.

The only way to accurately quantify savings and paybacks for energy reduction projects is to enter actual kWh, KW and other pertinent values into the algorithm of the tariff and calculate dollar savings against a baseline. Otherwise, your savings will usually be inflated—in some cases by a factor or two or three— and the paybacks on your investments will be much longer than promised or expected.

Paul Grover is CTO of Kilawatt Technologies, Inc., of Shelburne, VT, which provides measured energy reduction services to improve operational efficiency of commercial and institutional buildings. Telephone: (802) 985-2285; e-mail:

Continue Reading →


6:00 am
April 1, 2009
Print Friendly

Utilities Manager: Energy Incentive Programs: Are They Worth the Effort?


William C. Livoti

There are numerous opinions on the value of energy incentive programs—and even more opinions on how such programs should be structured. Here, we will ask questions about and discuss the value and purpose of these programs.

What’s in ‘em for you
First, why have the utilities, states and federal government implemented energy incentive programs? The simple answer is to reduce consumption. The more complicated answer is to minimize the risk of rolling blackouts, brownouts and power surges and to keep from having to build new power plants and transmission lines.

Yes, it takes time. Yes, you need to understand the process. And, yes, you must submit proper documentation.

Why federal involvement? Think of the uproar if we were to begin experiencing rolling blackouts during peak demand (or any time for that matter)? The American consumer has very little tolerance for power disruption—in fact, there seems to be a widely held misconception that electricity is a right rather than a privilege. In India and South Africa, though, power disruption, including rolling blackouts, is commonplace. Can you imagine what life would be like if you were allocated power for only 8 to 12 hours a day? Washington simply does not want to deal with the repercussions from the general public. Our state governments have a similar take on the situation.

Why, though, would the utilities offer incentive programs? They just don’t want to invest in additional power plants, transmission lines, etc. Building plants and adding transmission lines calls for significant capital investment. Power plants don’t pay for themselves overnight, you know—it could take 20 to 30+ years to pay for a large one. Consider that it costs roughly $2500 per Kw to build a fossil power plant; around $3000 per Kw to build a renewable energy plant; and 2.4 cents per Kw for energy conservation. Now, do you see why utilities have such aggressive incentive programs?

Are incentive programs really worth the effort? You bet they are! Pump systems offer the greatest opportunity, specifically around Premium Efficient motors, VFDs, controls and positive displacement vs. centrifugal pumps.

Use ‘em or lose ‘em
While justifying a system upgrade on energy alone may not make good business sense, adding the available incentives could make the project viable. In addition, your local utility will provide technical support (assuming they have a program in place). The paperwork is another matter. Yes, it takes time. Yes, you need to understand the process. And, yes, you must submit proper documentation in order to receive federal tax breaks for energy reduction.

For help, the best Website with the most comprehensive information, including links to utility, state and federal programs, is DSIRE (Database of State Incentives for Renewable Energy and Efficiency), located at www. If you don’t feel like dealing with the studies and paperwork by yourself, there are other options. For example, some vendors will perform energy assessments for you, provide cost savings data, develop project justifications and make recommendations on incentives—as well as complete paperwork for same.

Take advantage of incentive programs. Remember the advice to “use it or lose it?” Some utilities have withdrawn programs because of lack of response. Act fast. Don’t wait until energy conservation programs become mandatory. UM

Where to go for additional information: or

Bill Livoti, our new Utilities Manager columnist, is senior principal engineer for Power Generation and Fluid Handling with Baldor Electric Company. He also is vice chair of the Pump Systems Matter initiative. E-mail:

Continue Reading →


6:00 am
April 1, 2009
Print Friendly

Solution Spotlight: Leveraging An Advanced Maintenance Technology

The FLIR T250 infrared camera is the type of advanced technology that can pay for itself in very short order. Optimized for electrical mechanical surveys, it can scan wide areas and multiple components to find trouble fast. Among other things, it also can be used to help identify unsafe working conditions from overheating motors, compressors, pipes and any number of other sources in a busy plant environment.

sol_spotlight_flirNew detector technology
The T250 is the mid-range camera in FLIR’s T-series line-up (which also includes the T200, T360 and T400). It takes advantage of the company’s newest line of lightweight, advanced infrared detectors that perform in the 7.5 to 13µm spectral range. Straightforward software and documentation help users quickly conduct surveys. The T250 is upgrade-able, too. Higher-model T-Series features can be added as needs change and grow, thus protecting your plant’s investment. Both entry-level and experienced thermographers will benefit from its ease-of-use and various productivity-targeted features, including:

  • Convenient touch-screen Liquid Crystal Display (LCD) to capture sharp thermal images and report findings. Using the stylus and T250 touch-screen, professionals can scroll through pre-defined lists of text to help simplify reporting chores. The on-screen sketch, marker tool, and voice annotation capability also can make it easier to describe and report findings.
  • 80 mK thermal sensitivity that delivers 200 x 150 IR resolution (30,000 pixels). That’s one-third more detail than models with 160 x 120 resolution.
  • A 25° lens for normal views. An optional 45° lens is available for wide-angle images, and a 15° telephoto lens is available for long-range work.
  • Interchangeable lenses that easily attach to the camera body. Tilting only the optic allows intuitive and productive use of the camera for extended periods of time.
  • This is a benefit to organizations that regularly conduct detailed electrical surveys.
  • Auto and manual focus features that allow a wide range of users to take advantage of the camera. This ensures that everyone can take sharp thermal images and produce accurate temperature analysis and results. The camera’s 2x digital zoom capability helps users zoom in to get close detail in a range of applications.

The T250 includes QuickReport analysis and reporting software. Optional Reporter software—a Microsoft® Word-based program—is available from FLIR for advanced analyses and report generation. MT

FLIR Systems
Boston, MA

For more info, enter 34 at

Continue Reading →