Author Archive | Bob Williamson


9:49 pm
January 13, 2017
Print Friendly

Uptime: They Don’t Know What They Don’t Know

bobmugnewBy Bob Williamson, Contributing Editor

Why haven’t our continuous-improvement programs over the past 10 years given us sustainable improvements? We’ve focused on most of the top five ‘improvement tools’ with very little result. What are we missing?”

This question is being asked more and more these days. The good news is that it’s an excellent question. The better news is that someone in a leadership role is asking such a question. The not-so-good news is that there are far too many stalled continuous-improvement initiatives that should be similarly questioned.

What’s missing in too many continuous-improvement (CI) initiatives? The people? Leadership? Improvement tools? Overall purpose? Compelling need? In many cases, it’s all of the above.

Danger in the comfort zone

Frequently, the CI initiative itself drives the quest for improving business performance. Whether the initiative is TPM (total productive maintenance), RCM (reliability-centered maintenance), 5S, Lean, or something else from a long list of options, the intentions are almost always good. Each initiative requires a new perspective on how to get new things done to achieve new results. That, quite frankly, tends to be the fun part of rolling out new initiatives: new training on new tools to create a new mindset for solving old problems.

CI training and tools can be a pleasant departure from the run-of-the-mill problem solving—pleasant, that is, for some people. Others will choose not to be involved. They’re more comfortable with “the way we’ve always done things around here.” Change is not a priority. “We need stability, consistency, standard ways of doing things around here. Change is too risky.”

For many individuals in today’s workplace, there are comfort zones where routines prevail over the will to improve. This inertia of the past can be difficult to overcome. This, quite often, is where new CI initiatives come into play. “Let’s get everyone involved. That way they’ll see what can be improved and how they can pitch in to achieve new and higher levels of performance.” Unfortunately, it doesn’t always work out as planned. Soon after the CI initiative rollout, things fall back into “the way-we’ve-always-done-things-here routine” (the comfort zone.) The situation reflects a culture defined by the past, i.e., “how we’ve done things that have made our business successful all these years.”

So, who’s pushing the CI rope uphill? Why isn’t everyone helping to pull it? Simply put, “They don’t know what they don’t know.” Consequently, all that CI training, multiple show-and-tell CI events, and countless measurements of CI deployment don’t seem to work. We must begin asking, “What don’t they know that they need to know?”

Some people in a plant will embrace captured data as a first step toward continuous improvement, while ‘informed naysayers’ will resist it.

Initiatives versus evidence

About eight years ago, leadership at a certain plant began deploying machine-data collection devices so everyone could see how critical equipment was performing. It was a great engineering project, one that was intended to set the foundation for numerous CI initiatives targeting specific business-improvement needs. The project spanned a good four years and, eventually, several data-collection tools and associated displays were deployed.

The displays communicated, in scoreboard style, how the machines were running and when they were down or in a changeover mode. Most important, though, was the fact that they all spelled out the reasons for unplanned downtime. A plus was that these displays also showed planned production rates versus actual rates, and flashed the information for all to see. (One area manager even had engineering program the displays to show breaks and lunch and the time remaining, which seemed like Big Brother informing workers when they could take a break or go to lunch and how much time remained until the machines needed to be up-and-running again. Some saw that as a positive side benefit of the downtime displays.)

This initiative was labeled a success. Not much else came of the project, however.

On the other hand, what became of all that data residing inside the display-unit memory systems? The plant’s engineering team realized the capabilities of the displays went well beyond what one could see. For the most part, the rest of the plant staff and management didn’t know what they didn’t know about the captured data. While runtime/downtime status was automatically logged—and operators sometimes logged the downtime reasons—there was no evidence of this information ever being looked at let alone put to use.

Mining data for all to see

Were these CI-led equipment-downtime data-collection displays worth salvaging? Digging into just one of the critical machines, a constraint in the production flow proved quite revealing. “But, what can nearly 8,000 data entries from the past two months possibly tell us? Most downtime reasons are labeled ‘None’ anyway.” (They don’t know what they don’t know.)

But what if we were to take all that data, sorted out the “None” reasons for downtime, and tried to see what they were telling us?

The evidence pointed to a great many different downtime reasons over the two-month period. The operators really were capturing downtime reasons. A cursory analysis revealed the most-frequent reasons to the least-frequent reasons for a machine being down. (They don’t know what they don’t know.)

What is the value of knowing the downtime frequency for any reason if you don’t have the duration of downtime events? The downtime frequency without duration is what I affectionately call the “pain-in-the-butt factor.” All we know is how many times this thing happens. And the more it happens, the bigger the pain.

For machine-downtime data to be meaningful to the business, we need to understand not only the reason and frequency, but also the duration of the downtime. That’s when the true business impact of chronic downtime can be determined and specific countermeasures put in place to minimize, if not eliminate, the downtime cause.

Naysayers revealed

Confronting plant personnel with a treasure trove of captured data from machine-downtime display units can divide them into two camps: some will embrace the data as a first step in the CI journey; others will dispute the data’s validity and continue doing things the same way they’ve always been done. Let’s call the second group “informed naysayers.” They quickly remark: “We’ve tried to use those things in the past, and look where it got us. We shouldn’t trust the data because those operators are probably putting the wrong downtime reasons into the system.” (They don’t know what they don’t know.)

Continuous-improvement initiatives—regardless of their intent—must focus on meaningful business cases and compelling opportunities for improvement, and be built upon evidence rather than opinions from the comfort zone. There will be times in any CI journey when someone, i.e., from upper management or the plant floor, becomes vocal opposition. (They don’t know what they don’t know.)

Make sure that you use actual equipment data to define your CI activities and show significant improvement as measured by the information being collected, analyzed, and acted upon by people closest to the machines. Help the naysayer crowd at your site learn more about what they don’t know as a part of their culture-changing paradigm shift. MT

Bob Williamson, CMRP, CPMM, and member of the Institute of Asset Management, is in his fourth decade of focusing on the “people side” of world-class maintenance and reliability in plants and facilities across North America. Contact him at


10:03 pm
December 20, 2016
Print Friendly

Leadership is Part of Asset Management

Managing is about doing things right; leading is about doing the right things.

Managing is about doing things right; leading is about doing the right things.

By Bob Williamson, Contributing Editor

Leadership and commitment from all managerial levels is essential for successfully establishing, operating, and improving asset management within the organization.” (ISO 55000, 2.4.2). This statement sets the stage for leading, rather than managing, the asset-management journey. What does that mean?

Author Stephen Covey described the difference in these terms: “Management is efficiency in climbing the ladder of success; leadership determines whether the ladder is leaning against the right wall.”

My take is that managing is about doing things right; leading is about doing the right things. In this month’s “Uptime” column, I noted that leadership skills are required to set a new direction, inspire and motivate people to achieve new results toward a new vision, and engage them as they create new work processes. Where does leadership specifically fit in ISO 55001? Let me explain.

The Standard requires a comprehensive, organization-wide system that spans the life-cycle phases of an asset. Fundamentally, this means much more than an organization having a single departmental unit or function that focuses on the asset-management system. Every part of an organization that has anything to do with assets that produce value will play a role in the management of those assets. For most organizations, this is new strategic alignment. It also calls for leadership: “Top management shall demonstrate leadership and commitment with respect to the asset management system …” (ISO55001, 5.1 Leadership and commitment).

While top management typically focuses on “big picture” items, looking toward the future and inspiring and motivating people to achieve new results isn’t necessarily engrained in traditional management behavior. Thus, organizations face a paradigm shift as they conform to the standard. The definition of “management” is the catalyst.

Let’s recap what we know so far: Asset management is not maintenance management. True life-cycle asset management demands a major organizational culture change—something else that requires leadership.

Keep in mind that while top management may play a key role in leading people to achieve new goals, with regard to successful asset management, there’s a practical need for leaders at other critical organizational levels. Their new roles must be defined as part of an emerging asset-management system. Here are some tips for grooming leaders:

Top management must understand and demonstrate functional knowledge of asset management and the systems required to achieve the organization’s goals. Managers must also learn to lead their organization into the future of asset management.

Some managers within an organization may be ideal asset-management leaders; others struggle. As Jim Collins advised in his book Good to Great, “Get the right people on the bus, the wrong people off the bus, and the right people in the right seats.”

Successful asset management depends on leaders who have personal values that align with the organization’s vision and policy regarding these efforts and a responsibility to achieve the organization’s goals.

Note that organizational alignment, or line of sight, toward common asset-management goals is essential. In the end, the journey toward life-cycle asset management, whether it conforms with ISO 55001 or not, demands leadership habits cascading from the top of an organization down through every unit that affects asset performance and reliability.  MT

Bob Williamson, CMRP, CPMM, and a member of the Institute of Asset Management, is in his fourth decade of focusing on the “people side” of world-class reliability and maintenance. Contact him at


9:50 pm
December 20, 2016
Print Friendly

Uptime: Growing Future Leaders


By Bob Williamson, Contributing Editor

Leadership is not management. Although these terms often are used interchangeably, they reflect two entirely different, but necessary, behaviors in successful businesses.

Take, for example, the fact that organizations striving to establish proven reliability-improvement best practices often struggle—and not because of an inability to manage. Rather, it’s because of their limited ability to lead people to adopt new practices and tools. Consider the following points:

Management. As small businesses grow from a handful of people to departments and cost centers they shift from entrepreneurial teamwork to an organization that requires a management hierarchy. Chaos would soon reign and business would fail without management structures.

Management is about organizing, planning, defining jobs, hiring, preparing and monitoring budgets, setting policy, and defining procedures, all aimed at running an efficient and effective business. Managers tend to be very directing of others in their organizations—to the point they can delegate
with confidence.

Leadership. Well-managed businesses can, no doubt, achieve staggering results. Still, as businesses come under significant fire from new competition, market changes, or other threats, management skills can come up short.

In such cases, leadership skills are required to set a new direction, inspire and motivate people to achieve new results toward a new vision, and to engage them as they create new work processes. Leaders tend to shift their styles beyond management to support and coach those in their organizations. They also tend to adapt their behaviors to the needs of the individuals or groups they are leading.

Lessons learned

In the 1980s, when I worked with a team to instill new leadership behaviors in a large, multi-national construction and maintenance business, we quickly learned that old management and supervision habits were hard to break. Many of our superintendents, supervisors, general foremen, and foremen on the jobs had learned their own leadership styles early in their careers. It was clear that some had exceptional role models, while others . . .well, let’s just say it was their way or the highway.

Learning from other leaders.  One of the most important things we learned was how influential leaders were to the up-and-coming leaders. Leaders modeled the way—good, bad, or indifferent. Quite often the first supervisor of a potential leader is the most influential. I touched on this in last month’s Uptime column regarding the use of mentors, sponsors, and first coaches (see “Vision, Passion and Talent Management.”).

Suggestion: Choose a new leader’s first coach, i.e., role model, wisely. Make sure a new leader spends time with a skilled and knowledgeable mentor to help diffuse undesirable methods and instill the desired ones. Assign a higher-level sponsor to the new leader to help nurture a vision for the future of the business and for the new leader.

Setting leadership expectations. We also discovered that many of our managers and supervisors weren’t cut out to be leaders in the first place. Sure, they may have been highly skilled in their craft, but that often worked against their leadership effectiveness. We discovered that when these skilled people were promoted, we often lost a craftsperson and gained a terrible leader.

Referring again to last month’s Uptime column, I discussed the importance of establishing a clear definition of “who” you need in terms of technical and soft skills to be successful on the job and in the company’s culture. It’s important to select potential leaders with the blend of technical abilities and interpersonal traits.

Suggestion: Select for success. Look for future leaders who have a “right fit” for the job role and elicit desirable types of behaviors when working with others. Specific assessment instruments and carefully defined role-play exercises may be helpful here.

Creating individual leadership-development plans. We discovered that many of our leaders learned how to lead on the job through trial and error. That type of on-the-job training led to a huge disparity of styles in what was to have been common leadership methods. Their idea of a leadership-development plan was a weekly debrief with a supervisor and a discussion of the good, bad, and ugly for the week.

An individual leadership-development plan should be based on a common set of leadership expectations tailored to the unique needs of the new leader and the specific job role he or she expects to be filling.

Suggestion: Start with a solid definition of the skills needed to be successful in future leadership roles, i.e., technical skills, behavioral (or interpersonal) skills. Having clear definitions of the knowledge requirements also helps flesh out the job-performance requirements for your leadership-development plans. Think of these as job-based duties and tasks—clear, observable, and measurable.

Promoting ‘off the street’ or from within. Where your future leaders come from will have an impact on the workplace. In our case, we found that most of our front-line leaders (foremen and supervisors) and middle leaders (general foremen and superintendents) were promoted from within the company. Those brought in from outside had a triple challenge: Learn the job, the work processes (how work gets done), and the company policies. Since the front-line and mid-level leaders were the communication link to the company and the work schedule, they often grasped at straws for the right answer. This was obvious to their work groups.

Suggestion: Look for future leaders within your business and your company. They already have an invaluable jump-start over others off the street.

Providing formal education and experiential learning. Bringing new leaders up to speed requires a blend of formal leadership education and “shop floor” experiential learning. For maximum effectiveness, these two types of methods should reinforce each other.

We were fortunate, in the 1980s, to have had the staff and the talents to develop our own internal leadership-education programs. They included day-long workshops, team-taught by our facilitators/instructors, with a combination of practical theory and role plays.

Suggestion: Work with a local community college or university to develop a leadership education program that aligns with your organization’s leadership expectations and development plans.

Leadership and technical skills

Managers and leaders must know what they are talking about and what they are responsible for accomplishing in their organizations. Leaders, though, have an extra need for credibility to be trusted as they move people toward new goals.

In that regard, leaders have two options: building their own level of equipment and process-reliability expertise and/or building a committed team of knowledgeable people. Both approaches can be highly effective. That said, regardless of his or her approach to gaining credibility, a new leader must lead—not manage the path and the organization change to improved equipment and process reliability.

Manager or leader?

As one CEO told me in my early days as a manager, “You manage assets, projects, timelines, and budgets, but you lead people to accomplish the goals.” Solid management and effective leadership are both needed as an organization embarks on a new, or renewed, quest to improve performance.

Consider some of today’s top sports-team coaches: They are inspiring leaders. Assistant coaches are managers. MT

Bob Williamson, CMRP, CPMM and member of the Institute of Asset Management, is in his fourth decade of focusing on the “people side” of world-class maintenance and reliability in plants and facilities across North America. Contact him at


7:01 pm
November 15, 2016
Print Friendly

Vision, Passion, And Talent Management

bobmugnewBy Bob Williamson, Contributing Editor

Learning how to perform a maintenance task, whether a repair or a preventive-maintenance inspection, requires training, proper tools, spare parts, and general knowledge relating to safety. But, that’s not all: Aptitude is also required. It’s the natural ability to understand functional relationships and accomplish the tasks at hand. In the case of maintenance, that means mechanical, electrical, or electronic aptitude.

Yet, to qualify as a competent maintenance technician these days, training and aptitude are not enough. As my Oct. 2016 “Uptime” column noted, technology innovation and modernization of the Fourth Industrial Revolution have reached into nearly every aspect of equipment and facilities operations and maintenance—at a remarkable pace. Couple the escalation of technology with a widespread shortage of technical skills in the workforce pool, along with a shortage of maintenance-and repair-education providers, and we have a serious problem.

To put a different spin on the situation, as industrialist Henry J. Kaiser once said, “Problems are only opportunities in work clothes.” Simply worrying about our skills shortage, the assimilation of rapidly advancing technologies, and demands for high-performing, reliable equipment won’t make these threats go away. Instead, we need to boldly confront them in a positive, proactive manner. That boils down to talent and how we manage it.

Hiring, developing, and retaining the right people should be the top priority of any business that depends on physical assets.

Hiring, developing, and retaining the right people should be the top priority of any business that depends on physical assets.

Food for thought

While attending Dematic’s Materials Handling & Logistics Conference in Park City, UT, two presentations stood out for me: One was a discussion about achieving your personal best and the other was about talent management. What, on the surface, might have seemed like two very different topics, became hard-wired together in my mind.

Although it sounds like an individual discipline, achieving your personal best is about aptitude, interest, willingness, and an associated passion to succeed under the guidance of talented, dedicated coaches and mentors. That was the premise for the presentation by Michael Phelps, the most decorated Olympic medalist of all time, who candidly discussed his award-winning journey. As I look over my copious notes from his interview session, I continue to be struck by two things that he highlighted: vision to succeed (to win) and passion for the sport.

When he was seven years old, Phelps dreamed that he would win an Olympic gold medal. At 15 years of age, he described how he wanted to do with Olympic-level swimming what Michael Jordan had done with basketball. And, at age 31, he has done just that. What began as a love for swimming, and some very skilled and motivating coaches along the way, still required a compelling vision for what he wanted to achieve. That’s where passion comes in. What may have seemed to be about wanting to win, win, and win some more was really this Olympian’s passion for the sport, and how it could be used for a bigger good.

This brings me to the presentation on “Supply Chain Talent Management” led by Mike Burnett of the Global Supply Chain Institute (GSCI) at the Univ. of Tennessee Haslam College of Business, in Knoxville. His topic is described in detail in a white paper entitled “Supply Chain Talent–Our Most Important Resource.” While space won’t allow a full recap of the subject, there were a number of timely—and essential—takeaways.

Best practices

Hiring, developing, and retaining the right people should be the top priority of any business that depends on physical assets (machinery, equipment, facilities, utilities), now more than ever. This process must also become a truly collaborative partnership between the front-line business leaders and the human-resources professionals.

The “GSCI Supply Chain Talent Management” white paper provides a framework that makes sense for reliable equipment, plant, and facility operation, well beyond its supply-chain focus. The institute’s surveys and interviews of benchmark companies should help us create career pathways for our technicians and leaders. Here are some of the best practices the GSCI identified:

• Clear definition of the “who.” Describe the talent, the “who,” you need in terms of technical and soft skills to be successful on the job and in the company’s culture.
• Use of mentors, sponsors, and first coaches. Acquire the resources required to help everyone succeed.
• Individual skills-development plans. Start with a solid definition of the skills needed to be successful in the end-to-end supply chain, in supply chain disciplines, and in specific roles.
• Internships/co-ops. Provide opportunities to obtain experiential growth in job skills, learn from diverse thinking, and evaluate a work-culture fit.
• Top university partners. Find students who best fit the definition of the “who” and then place them in a role where they have the best chance for success.


Employee training is a must, and on-the-job-performance qualification is the practical outcome of efficient and effective training. But, let’s not blur the lines between talent management and training. They’re not the same. Yes, training is a vital element of a talent-management system. But talent management is the system that aligns the people side of the organization with the needs of the business.

The bottom line of the GSCI supply-chain talent discussion was summed up in their three recommendations.

• Create a clearly documented, talent development strategy. This is the first, and most important, step.
• Employ best-in-class talent-development programs. Include educational and experiential components with a mixture of internal and external experiences.
• View talent development as owned by the business and driven by ROI. Manage talent like you manage your supply chain (your business).

For our purposes

Now, back to my notes from Michael Phelps’ interview. To repeat, what struck me most about his story was the vision he had to succeed (to win) and his passion for the sport. We need to leverage those things for our own purposes.

As we look ahead to developing talented people to succeed at installing, maintaining, and repairing equipment and facilities, we must find ways to excite our in-school youth. For example, some have keen interests in sports because of what they see on TV, at sporting events, and what their friends are doing. Some get excited about computers and software and writing code. Some pursue teaching because of the role models in their schools and classes. Some want very much to preserve our planet, or to pursue agricultural interests. Some have a passion for mastering welding for their own use, but later find out that they can earn big bucks as certified welders.

Our challenge is to find ways to instill in them a vision to succeed and a passion for their futures. Sure, the focus on STEM education is resurfacing. But that’s not enough. We need more, younger-aged students learning about the rewarding careers they can have as equipment and systems technicians in manufacturing, utilities, process industries, and building and facilities management.

There are plenty of ways to do this. Look for opportunities to invite students, teachers, school administrators, and board members into your facilities. Institute and/or support plant tours, career days, bring-a-child-to-work days, co-op experiences, and summer internships. Over time, the payoff could be significant. After all, what if Michael Phelps had never seen a real swimming pool, learned to swim, or not had a motivational mentor who recognized his aptitude and talent? MT


• “Supply Chain Talent Management” white paper, April 2015, Global Supply Chain Institute, Haslam College of Business (

• Michael Phelps Foundation (

Bob Williamson, CMRP, CPMM and member of the Institute of Asset Management, is in his fourth decade of focusing on the “people side” of world-class maintenance and reliability in plants and facilities across North America. Contact him at


6:57 pm
October 11, 2016
Print Friendly

Uptime: Beware the Fourth Industrial Revolution

bobmugnewBy Bob Williamson, Contributing Editor

As a presenter at a recent material-handling conference, I took the opportunity to attend sessions on topics of maintenance, workforce development, and automated handling and sorting systems. Intriguing discussions on the “Fourth Industrial Revolution,” a theme of recent World Economic Forum events, were a highlight for me. Technological advancements associated with this era are already entering our plants. Their larger impact on businesses and our socio-economic systems, however, could be overwhelming. Are we ready?

Industrial Revolutions 101

First things first: What were the previous Industrial Revolutions all about?

Most of us learned about the First Industrial Revolution in world-history and social-studies classes. The productivity of craftsmen, tradesmen, and artisans was transformed by steam, water power, and mechanization of traditional work that led to cotton-spinning machinery and railroads. Beginning in the late 1750s, it ramped up through the 1870s.

The Second Industrial Revolution was characterized by manufacturing and the division of labor, which included the introduction of electric power, interchangeable parts and, eventually, mass production with assembly lines. It spanned the 1890s through about 1970.

Many readers cut their world-of-work teeth during the Third Industrial Revolution, which began the transition from pneumatic logic to electrical controls, to microprocessor-control strategies. The digital age was upon us with information technology (IT), computer mainframes transitioning to personal computers, automated-manufacturing systems, industrial robotics, and the Internet. This timeline runs from the 1970s through today or, as some are forecasting, through 2020.

The work processes and enabling mechanisms and technologies of the world’s first three Industrial Revolutions grew at accelerated rates: 120 years to 80 years to 50 years respectively. If we are to learn from that pattern of growth and explosion of the Internet of Things (IoT)/Industrial Internet of Things (IIoT), we should fasten our seat belts. The rates of change and emergence and adoption of advanced technologies are increasing exponentially.

What does this have to do with readers of Maintenance Technology? Plenty. We’re on the cusp of the most significant changes ever in modern industry. They will have a far-reaching impact on how business is done and how society interacts.

Creating false expectations

Hearing high-level engineering and technical experts discuss the Fourth Industrial Revolution, I became enamored with the possibilities. The speakers frequently referred to totally automated material-handling systems where everything is autonomous. The only human involvement is overall arrangement, control, and interlinking system components. Amazing!

If I were a chief financial officer, chief information officer, or chief operating officer, though, what would I have heard? “Automated machinery and facilities can, and will, replace people.” Wow! No more worries about overtime, healthcare, human error, grievances, vacation, cost-of-living issues, a  $15 minimum wage, and the list goes on.

Everyone—literally everyone—I hear waxing eloquently about the future of automated systems and facilities, though, seems to have forgotten about maintenance. That’s not unusual. Many people tend to think of maintenance as fixing things that people damage. From their perspective, if we remove the erratic and ever variable human element, all is well. Right? Wrong!

Technical skills must prevail

Automated machines and systems must be fabricated, assembled, and commissioned by people. Once these precision and technologically advanced machines enter the workplace, they must be programmed and integrated by yet another group of people. At that point, such machines should basically be ready to operate autonomously with technology that has been proven to work efficiently, and effectively. Are they really?

This is where some of the technological promises of autonomous equipment and systems fall apart. Those modern marvels still require maintenance. Sure, many now have, and will continue to expand their condition-monitoring/self-diagnostic capabilities. But, can they fully maintain themselves? Probably not.

In fact, maintenance of highly automated systems just became more complex because of automation’s sensors, transmitters, transducers, control loops, logic controllers, Wi-Fi networks, software, signal cables, connectors, circuit boards, and many other components that make the base system, machine, vehicle, or conveyor function without the aid of a hands-on human.

Managing the base machine

I’ve said for decades that automation by itself does nothing. Automation (whatever it is) must connect to a base system or machine. These can be configured in many different ways, including as automated guided vehicles (AGVs), conveyors, sorting systems, forked vehicles, pallet movers, tuggers, deck vehicles, and self-driving vehicles (cars, trucks, trains, and airport people movers).

Let’s focus on forked AGVs. This is basically a forklift truck that has been fully automated. The components of a forked AGV still require routine (periodic) maintenance, and an occasional repair, including, among other things, its:

  • mast system, rollers, sliders, chains, guards, hoses
  • hydraulic-lift cylinder(s), tilt cylinders, hoses, control valves, pump, fluid filters, fluids
  • forks, carriage
  • drivetrain wheels, tires, drive axle, transmission, steering
  • electric-motor connections, wiring, brushes, armature condition, filters
  • battery system terminals, electrolyte, status indicator, and the actual battery
  • electrical contactors, connections, lugs
  • lubrication of chains, rollers, motor, fork carriage, pivot points, wheel spindle bearings
  • electrical-system wiring, connectors, lights, annunciators, warning devices.

What’s missing from the forked AGV maintenance list that’s included on one for a traditional forklift? Not much: the operator’s seat, seat belt, steering wheel, protective cage/roll bars, brakes, and gear shifter. In the end, the reliability of the forked AGV depends on the reliability of the base systems and components, the automation system(s), and the interface between those two complex systems and components.

The teachable moment

Higher levels of automation complexity will introduce countless more opportunities for failure. The requirements for inherent (built-in) reliability, reliable work processes, and human talent will also grow exponentially.

The investment in human capital will become increasingly more important than the investment in capital assets in the Fourth Industrial Revolution. Without investments in skills and knowledge to operate and maintain high-tech systems, the money spent on new automation will fail to achieve the desired businesses goals.

Key takeaway

The “Professional Equipment Technician” of the very near future will be required to master equipment/system maintenance fundamentals, interpret on-board diagnostics, and make necessary repairs to electro-mechanical systems. The good news is that all of this is achievable without a four-year college degree.

Businesses must accelerate their internal and external talent-management systems. Community colleges and technical schools must begin tooling up for transforming occupations. Beyond STEM (science, technology, engineering, math) skills, our elementary, middle, and high schools must begin introducing careers for modern industrial/manufacturing and facilities maintenance that will continue to command high wages for high skills.  MT

Bob Williamson, CMRP, CPMM and member of the Institute of Asset Management, is in his fourth decade of focusing on the “people side” of world-class maintenance and reliability in plants and facilities across North America. Contact him at


1:53 pm
September 14, 2016
Print Friendly

Uptime: When Best Practices Aren’t Enough

By Bob Williamson, Contributing Editor

bobmugnewConsider the following remarks.

“Recently, our top executives announced that our cost of manufacturing still wasn’t what it needed to be, even with all the maintenance improvements and lean initiatives over the past few years. And while our quality and delivery continue to be topnotch, one of our largest customers served an ultimatum that they would be taking their business overseas unless we could improve our pricing.”

“Despite all the maintenance best practices we’ve deployed, we (and others) are finding the department under the cost-cutting knife again. We’ve improved our spare-parts management significantly in the past two years, including stock outs, inventory levels, critical spares, and obsolete parts. Our maintenance labor hours are 90% proactive. But, new equipment continues to be added to the mix to reduce operating labor costs. What should we do?”

Sound familiar?

The real goal

Cost cutting is not a goal. It’s an action deployed as a way to achieve a short-term business goal—one that’s often short lived.

Here’s the challenge: While executives may be preparing for another round of cost cutting, there could be a more powerful alternative. It’s going to take thinking outside the maintenance box, however, to look at manufacturing process reliability. The real goal here is to show management how it can reduce manufacturing costs and position the business for higher earnings growth by tapping into the plant’s hidden capacity.

I recently discussed this approach with a company’s top executives and plant-leadership team. They talked about how strong their business was this year and on into early next year. Their honest concerns centered around getting costs under control to improve the company’s earnings in light of the potential loss of a large customer looking for price cuts. They summarized their strategic performance indicators as three overarching goals:

  • On time, in full—orders shipped to customers on time in the quantity and quality requested.
  • Lead time—reduced time between order received and order shipped.
  • Cost per unit produced—lowest all-in, total cost of making a product.

These executives were describing their goals for a reliable manufacturing process, i.e., a process that performs as intended. Their vision reflects a real opportunity for the organization—one that eclipses another cost-cutting initiative.

Tapping into a plant’s hidden capacity can help cut manufacturing costs and position the business for higher earnings.

Tapping into a plant’s hidden capacity can help cut manufacturing costs and position the business for higher earnings.

Thinking beyond maintenance

Let’s explore this opportunity by thinking about reliable manufacturing processes, i.e., thinking beyond maintenance. The executives who spoke with me agreed to form an improvement team of hand-picked personnel, including the maintenance manager, production operator, maintenance mechanic/union president, front-line supervisor, manufacturing vice president, and the continuous-improvement/quality director. The team used the following data-mining process to get started:

  • Identify the strategic key performance indicators (KPIs), i.e., lagging indicators.
  • Mine company data to determine the leading indicators and what form they take.
  • Determine how plant performance is inhibited, according to the current data.
  • The next step involved a review of top-level indicators that plant leadership was focused on improving, including:
  • labor efficiency variance as a percentage of standard
  • indirect factory labor as a percentage of revenue
  • operating expense as a percentage of revenue
  • obsolete materials and work in process (WIP).

Team members then began to look for specific factors that contributed to labor, operating expense, and materials cost. They also looked for factors that could interrupt flow through the entire manufacturing process to the paying customer.

Based on the team’s review of various ad hoc reports from the company, the improvement team found the most frequently listed reasons for the plant performance losses to be:

  • ran out of work in process (WIP) to meet an order.
  • ran out of raw materials to produce to plan.
  • inaccurate inventory: WIP and raw materials.
  • schedule change: materials delayed upstream.

The improvement team also learned that material cost was the highest cost of manufacturing and labor cost was the lowest.

Asking ‘why’

Drilling down another level into the most-frequently listed reasons for plant-performance losses was the improvement team’s next step: For example, answers to Why did we run out of WIP to meet an order? included:

  • no reason
  • system quantity was different than what actually existed
  • some named items were defective and could not be used.
  • items needed were on quality control hold.

Asking Why did we run out of raw materials to produce to plan at the upstream production processes? revealed some similarities:

  • not enough materials on skid, wrong count.
  • some materials were defective, damaged.

Team members soon recognized that they were discovering why production flow was being interrupted in the plant. In turn, they began wondering if equipment issues, i.e., breakdowns, might also be leading to performance losses. Digging into machine-downtime-tracking information, they found documentation that stated: Machine down for repairs, no operator, no reason listed.

To learn more about the nature of repairs in the plant’s critical-constraint production department, members of the improvement team began discussing machine downtime issues with personnel in the maintenance and operations groups. It was learned that the losses were not so much about equipment breakdowns, but rather:

  • setup problems
  • equipment damage
  • adjustments.

By asking why, the improvement team discovered that machine problems interrupted flow and were possibly linked to inventory and quality issues that had a direct effect on plant performance and the top KPIs (key performance indicators). Unfortunately, other than through maintenance requests, very few machine-related losses were being reported, tracked, or systematically analyzed. This situation had to change if plant reliability was to improve.

Tracking major equipment losses

What equipment-related losses should be tracked to improve plant reliability? The improvement team identified the types of losses that would most likely have a strategic impact on the business: equipment-utilization losses. Here’s how team members agreed to formally collect and categorize equipment performance data for the 17 most critical assets in the plant:

  • Equipment capacity (designed or historical best)
  • Planned capacity losses:
    • Planned shutdown: not scheduled/no demand
    • Planned shutdown: maintenance
    • Planned downtime: not scheduled (breaks, shift change)
  • Planned utilization: time that machine was scheduled to produce something
    • Utilization losses (during scheduled operating time, i.e., the hidden factory):
      • planned downtime: setup/changeover
      • unplanned downtime: no or defective WIP/material
      • unplanned downtime: breakdown
      • unplanned downtime: no operator
      • unplanned downtime: production schedule change and/or interruption
      • efficiency loss: slow-speed or throughput rate
      • efficiency loss: minor stops/startup/adjustment.
    • Yield loss: defects/damaged/scrap output
    • Yield loss: defects/rework
    • Yield loss: startup/adjustment.
  • Actual asset utilization: the bottom line; what the equipment actually delivers).

The reliability mindset

In this case, the improvement team recognized that improving plant reliability is not as much about maintenance as it is about identifying and eliminating equipment-performance losses and interruptions to flow. And, to do that, it’s crucial to have equipment performance data that are accurate and timely.

The good news so far is that top-level executives and other plant leaders have agreed to identify and address the most significant equipment-utilization losses in the manufacturing-flow constraints. Stay tuned for more as this story unfolds. MT

Bob Williamson, CMRP, CPMM, and a member of the Institute of Asset Management, is in his fourth decade of focusing on the people side of world-class maintenance and reliability in plants and facilities across North America. Contact him at


3:04 pm
August 10, 2016
Print Friendly

Uptime: Don’t Overlook Spare-Parts Reliability

bobmugnewBy Bob Williamson, Contributing Editor

Maintenance management covers a variety of functions, including the managing of spare parts. We know that the quality of those parts has a direct impact on the reliability and maintainability of equipment, machinery, and facilities. There’s more to it, though, than simply managing a storeroom.

How spare parts are specified, purchased, shipped, stored, dispersed, and installed reflects critical elements in physical-asset performance and operating cost. Unfortunately, the parts are often overlooked in ways that compromise equipment reliability.

Real-world impact

Even the most reliable equipment can fail if the right spare parts—fit for service and mission ready—aren’t installed properly. While a maintenance staff’s skill and knowledge is an important reliability factor, the inherent reliability of spare parts at the time of installation is even more so.

Consider these examples of how spare parts can contribute to machine failures, excessive downtime, higher costs, and financial losses.

Transportation damage. Several catastrophic failures of the fan in a plant’s heat-treatment carburizing furnace led to enormous production and financial losses, not to mention a disruptive domino effect on production schedules. Removing and replacing the fan is difficult and time consuming, given its location in the bottom of the furnace.

A failure analysis determined that cracks in the fan cooling jacket led to bearing failures. These events continued even after months of discussing fan construction with the OEM, changing welding methods, and carefully installing new fans.

Eventually a root-cause analysis session was held with operators, maintainers, supervisors, area managers, plant engineers, and the fan company’s owner. All potential failure causes were quickly ruled out based on prior actions. The facilitator then asked the group to take a hard look at the fan currently installed in the furnace and a new spare in the storeroom.

As participants checked out the new spare firmly strapped to a wooden pallet with its shaft in a horizontal orientation, the fan manufacturer asked a question that ultimately unraveled the mystery of repeated failures: “Is that how we ship these fans to you?”

At this point, a mechanic interjected that when a fan is installed, its shaft is vertical. “That could cause bearing problems,” he said. Others weren’t so sure.

The OEM began speculating: “These fans are shipped more than 800 miles to your plant by truck,” he said. “Imagine the bumping and jarring with the weight of the fan and shaft supported by the bearings on the cooling jacket. The cracks in the failed units seem to start around the upper side of the shaft-bearing mounts. Shipping them flat, in the same orientation as they are installed in the furnace, may prevent the cracking.” Was he on to something?

Once the manner of shipping was changed, i.e., with the fans strapped to pallets in the same orientation as they were to be installed, the failures ceased. The maintenance group also found that the fan bearings lasted longer.

In-plant moving methods. “It’s a big electric motor. How did you expect me to move it?” The speaker was a forklift operator who found it easier to pick up large motors by the shafts located at each end of the units. After all, they fit nicely between the forks, with minimal adjustment, and would roll to the back of the forks when they were tilted back slightly. Great move for the forklift driver.

As for the motors, their shafts were becoming hammered, especially at the keyway. Maintenance techs thought the units sometimes seemed to be out of balance. Taking note of the forklift operator’s preferred methods, they finally realized the cause of the problems: improper handling of electric motors from the receiving dock to the storeroom and from the storeroom to the job site.

Behind-the-scenes. One of the most frequent and penalizing mechanical failures on a brewery’s packaging lines was attributed to conveyor-belt drive- and tail-roller bearings. Improper installation and lubrication and incorrect bearing types were ruled out early on. The bearings themselves then became suspect.

Packaging-line parts were kept in a storeroom near the lines. Operated by the purchasing department, it was staffed 24 hours a day as an inventory-control measure. Nobody else was allowed inside—that is until the purchasing manager granted access to a consultant.

During a failure investigation, stored conveyor bearings, many in open boxes, were found covered in rust. “Not a problem,” replied the storeroom attendant when asked about the situation. He explained that with “a little steel wool, lubricating spray, and lots of buffing” those bearings would look just like new. The problem with the brewery’s packaging-lines was solved on the spot: High humidity in the storeroom and unprotected bearings were identified as major factors in the failures.

Extreme environments. Handling and storage of spare parts is especially challenging for offshore oil- and gas-production platforms. If bouncing around on the boat trip from an on-shore warehouse to an offshore platform doesn’t contribute to early failures, improper maintenance of the stored items will. Humidity and salt air are also tough on parts.

Offshore platforms are compact, often-congested configurations of piping, pumps, motors, and compressors. Vibration in these operations—ever-present and frequently ignored—can lead to spare-parts failures. For example, when motor and pump bearings are stored near rotating equipment, vibrations created on the platform can damage them. Moreover, regular maintenance of stored spares such as rotating shafts is mandatory.

The counterfeit scourge. The spare-parts supply chain has gone global. The upside is online ordering and competitive pricing. The downside is explosive growth of the counterfeit marketplace.

Knock-off trademarks, look-alike labeling and branding, and sub-standard-quality spare parts have invaded our storerooms. These reliability time bombs include bearings, seals, nuts and bolts, pipe and hydraulic fittings, electrical/electronic components, wiring, and cables.

Monitoring your spare-parts supply chain, buying from trusted sources, and rigorously inspecting parts before placing them in a storeroom should form the basis of your organization’s spare-parts management practices.

Sometimes, the inexpensive. One spare-parts-management technique I learned from working with top NASCAR race teams over the years is to carefully inspect parts before they’re put on the shelf—especially those that can affect racecar performance. And for good reason.

In the 1990s, a race team suffered a catastrophic engine failure caused by an unlikely culprit: a three-cent nylon zip tie. When the zip tie failed, the oil line it was restraining dropped onto the alternator fan belt. It was only a matter of minutes before the engine failed due to oil streaming from the cut line.

Inexpensive spare parts are often overlooked. These tend to be commodity items where low cost shapes purchasing decisions. With many commodities, though, you get what you pay for. Be sure to consider the function of such items and the impact of their failure when making purchasing decisions.

Manage your supply chain

Paying attention to the spare-parts journey from the OEM, through distributors, into your storerooms, and on to equipment makes sound business sense. The bottom line is that proactive storeroom-management practices, coupled with supply-chain management, can eliminate most causes of spare-parts failures. MT

For more information on the management of storerooms and spare parts, see Put Efficiency in MRO Storerooms and Bob Williamson’s ISO 55000 column.

Bob Williamson, CMRP, CPMM, and a member of the Institute of Asset Management, is in his fourth decade of focusing on the people-side of world-class maintenance and reliability in plants and facilities across North America. Contact him at