Author Archive | Bob Williamson

36

7:28 pm
July 12, 2017
Print Friendly

Uptime: Curiosity — It’s Fundamental To Reliability Improvement

bobmugnewBy Bob Williamson, Contributing Editor

Have you ever wondered why something is the way it is? Why is the sky blue? Why does it rain so much (or not enough)? Why don’t “they” understand maintenance?

Consider small children asking “why” again and again and again (often to the dismay of weary parents or caregivers). Those little ones are simply being curious, and for good reason. Curiosity is how humans learn—including in our work lives.

cur-i-os-it-y:
A strong desire to know or learn something.

Think about your plant: Is curiosity thriving there, or is it being stifled?

Frequently, we see what occurred and, sometimes, how it occurred. But how often do our second natures kick in and compel us to explore why something occurred (the cause)? Unfortunately, the real “why” may not be observable—it could be hidden. Consequently, it’s not uncommon for individual and/or implied organizational responses to run along the lines of “it always does that” or “I don’t really know.” Being able to answer “why” questions depends on the curiosity of personnel. I am convinced that being curious is the fundamental ingredient in reliability improvement.

In today’s workplaces, though, curiosity alone isn’t enough. It takes motivation to be curious (motivation to dig deeper into issues). All too often, the motivation (or available time) to ask “why” is insufficient for getting to the root cause of a problem, which, accordingly, is the first step in problem elimination.

mo-ti-va-tion:
Internal and external factors that stimulate desire and energy in people to be continually interested and committed to a job, role, or subject, or to make an effort to attain a goal.

Let’s explore these elements of a reliability-improvement work culture.

Reliability and curiosity

Usually, the first response in a plant when equipment breaks down is “fix it.” The typical first question is “What happened?” followed by “How do we fix it?” Only when we ask how and why equipment fails, do we actually begin solving the main problem.

(NOTE: It’s not unheard of for a “what” question to elicit this type of implausible response from personnel: “Nothing happened; the machine is running perfectly.” If true, that would basically reflect a state of reliability at its best, a highly unlikely situation. Be sure to ask why that machine is running perfectly.)

Although curiosity should be used to drive your reliability program, roadblocks are a fact of life. For example, how often do you hear these statements in your workplace:  “We don’t have time.” “It’s not my job to ask why.” “I’ve often wondered why, but every time I bring it up, there seem to be bigger issues.” They’re indicative of low levels of desire to know or learn more about an issue.

why question in wood type

Motivation to be curious

Organizational curiosity is a requirement for improving and sustaining reliability. The question is, how do we motivate individuals, and the organizations they comprise, to be curious?

Benefiting from curiosity in a workplace depends on the work culture that top leaders create. The motivation to be curious on the job is more than an individual factor. While an individual may be internally motivated to be very curious on the job, the organizational (external) motivation to be curious may not be there. Individual curiosity may be stifled, not recognized, and/or not appreciated.

Business author Harvey Mackay described the potential of individual curiosity this way: “Pay attention to those employees who respectfully ask why. They are demonstrating an interest in their jobs and exhibiting a curiosity that could eventually translate into leadership ability.” In other words, curiosity is also fundamental to effective leadership.

High-performing organizations have a passion for eliminating problems, improving performance, and engaging everybody in the process. A compelling business case, in turn, can be a real motivating factor for improving organizational performance and reliability, as well as improving equipment performance and reliability.

Inspiring and enabling curiosity

Leadership is the heavy-lifting component in motivating curiosity. Whether it’s top management or group leaders, plant leadership must be inspirational in the quest for organizational and individual curiosity. Consider the following real-world example.

Serving as a long-term consultant to an established manufacturing operation, I noticed what appeared to be excessive amounts of finished product being discarded as scrap. To be sure, legitimate defects, some big, but mostly small, were leading to the situation. Still, I felt it reflected a waste of good money—in terms of material, labor, and overhead—and a huge loss of equipment effectiveness and sales revenue.

When I asked why those mountains of scrap were being produced and thrown away, the response was typically, “That’s the way it is here.” While the organization, as a whole and individuals in it, clearly understood the scrap as waste, they considered it acceptable, i.e., already built into their costing and production-planning standards. Despite the collection of waste data in production-report databases, no waste metrics were being trended.

At some point, after extensive work with this operation to improve equipment performance, I found a relatively easy way to put a dollars-and-cents value to the waste. It came from asking “why” and exploring the production database for answers. My calculation of the actual seven-figure cost to produce scrap at the plant evidently resonated more with management than the previous reports of waste amounts and percentages. As a result, the site’s C-level leaders launched a waste metric and engaged work groups at the machines and in the manufacturing process to regularly ask “why.” Scrap products are now counted and monetized, something that’s reportedly setting the stage for cost savings.

What about your operations? How can you motivate organizational curiosity and inspire individuals to ask “why.” Consider these tactics:

• To paraphrase W. Edwards Deming, maintain a “constancy of purpose for the improvement of product and service.”

• Become obsessed with the elements of the organization’s competitive advantage.

• Model the way: Walk the talk, ask “why,” and invite others to pitch in.

• Disrupt the status quo as it interferes with performance improvement.

• Celebrate improvement efforts and wins.

In the meantime, never forget that answers to “why” questions are the first steps toward reliability improvements in your plant. MT

Bob Williamson, CMRP, CPMM, and member of the Institute of Asset Management, is in his fourth decade of focusing on the “people side” of world-class maintenance and reliability in plants and facilities across North America. Contact him at RobertMW2@cs.com.

83

6:40 pm
June 16, 2017
Print Friendly

Uptime: Face the Giant

bobmugnewBy Bob Williamson, Contributing Editor

We face challenging situations every day. In many cases, dealing with short-term challenges is a maintenance organization’s normal way of life. The problem is our long-term challenges, the ones at our doorstep, or looming just over the horizon that we often put off tackling. They’re “giants” bearing down on us.

Not too long ago, I spoke to nearly 90 maintenance professionals at an Oklahoma Predictive Maintenance User’s Group (OPMUG) event. Maintenance managers, supervisors, technicians, mechanics, planners, and engineers, they came from a wide variety of industries. Regardless of their particular role or business, though, they were all actively pursuing better maintenance practices.

I asked the attendees to take a few minutes and think about the top three challenges for maintenance that they expected to see in the next three, to five, to 10 years, then record them on note cards. Let’s consider what they wrote and how their thinking mirrors yours. Based on my analysis, the 117 challenges they came up with fit in the following nine major categories (some fit in more than one):

• Skills Gaps (35)
• Culture of Reliability (35)
• Training & Qualification (27)
• Top Management (26)
• New Technology (11)
• At-Risk Assets (10)
• Parts (10)
• Knowledge Transfer (8)
• Life-Cycle Asset Management (5)

It’s about ‘people’ on the front line

When we look for a common theme among the OPMUG responses, it’s not too surprising to see that it’s “people,” i.e., the biggest variable in improving equipment maintenance, performance, and reliability. Of the nine major categories above, three of them—Skills Gaps, Training & Qualification, and Knowledge Transfer (with a combined total of 70 responses)—point to challenges on the front line of maintenance.

Many responses alluded to difficulties in finding qualified technicians and shortages of skilled trades people. A few referenced the Millennial Generation’s communication skills, work habits, and expectations. Several addressed the lack of competencies for and interests in industrial maintenance careers.

Capturing the knowledge of workers nearing retirement appeared to be a sizeable challenge for many respondents. They noted that their organizations stood the chance of losing all skills and knowledge gained from years of experience. Furthermore, there was concern that even if they could capture crucial knowledge, without a capable replacement or the mechanism to train new employees, that knowledge would be lost.

It’s about ‘people’ in top management

A second group of categories—Top Management, Culture of Reliability, and Life-Cycle Asset Management (with a combined total of 66 responses)—points to need for leadership to improve equipment maintenance, performance, and reliability. Whether it’s the pursuit of best practices, asset-management processes, or culture change, top management sets the tone and defines the culture by purposeful actions, or,       by default, through inaction.

Some responses tied the challenge of Top Management to struggles with hiring and training priorities, i.e, management’s inability to grasp the severity of skills gaps, shortages, and knowledge transfer. Several mentioned decisions to cut maintenance costs and staff, reductions in time for preventive maintenance, and misinterpretation of the reliability requirements of new equipment.

Others referred to “silo” organizations and decision making that hindered maintenance and hurt the reliability of equipment and processes. These siloed objectives and decisions lead to an organization’s inability to focus on common goals for overall business improvement.

Regarding Culture of Reliability ranking right up there with Skills Gaps as a top challenge: Leading a culture of reliability means that the line of sight between reliability best practices and the goals of the business are understood. Frequently, that line of sight is not so apparent with reliability best practices appearing as a flavor of the month.

Facing our giant

Most equipment challenges lend themselves to reliable and sustainable countermeasures, or corrective actions. The giant we face isn’t so easily addressed: human variation, inconsistency, behaviors, moods, and habits present an ever-changing reliability improvement challenge.

Our giant can be lurking among front-line crews or behind decisions and actions made by top-, mid-level and/or front-line managers. Facing it with slingshots and stones may be our only option, that is, if slingshots and stones represent maintenance fundamentals, available tools, and accepting the reality of the situation.

We can no longer manage equipment performance and reliability the way we always have. There aren’t enough talented people, or isn’t enough time or money to continue that journey.

Bottom line, the skills gaps we see today, coupled with training and knowledge-transfer problems, are primarily caused by the fact that top management and reliability and maintenance professionals still aren’t “sitting at the same table” and focusing on common business goals. That’s sad.

Looking to the future, facing our giant will require fewer hands-on people, robust condition monitoring, building reliability into critical at-risk equipment, and, most of all, getting top-level management to believe in reliability best practices. MT

Bob Williamson, CMRP, CPMM, and member of the Institute of Asset Management, is in his fourth decade of focusing on the “people side” of world-class maintenance and reliability in plants and facilities across North America. Contact him at RobertMW2@cs.com.

11

5:24 pm
June 16, 2017
Print Friendly

Asset Management ‘Leaders’ and ‘Leadership’

Screen Shot 2017-06-16 at 12.22.22 PMBy Bob Williamson, Contributing Editor

In previous installments of this column, I’ve written that leadership and culture are determinants of an asset-management system. That comes right out of ISO 55000 documents. This Standard also states, “Leadership and commitment from all managerial levels is essential for successfully establishing, operating, and improving asset management within the organization” (ISO 55000, 2.4.2). A note of caution: Don’t confuse asset-management “leadership” with asset-management “leaders” or “managers.” Let me explain.

A leader (or manager) is someone with the responsibility to take action. Leadership, on the other hand, refers to a behavior, one that inspires and motivates. A designated leader (or manager), though, doesn’t always exhibit leadership behaviors.

Leaders (or managers) involved in the highest levels of decision-making in a business can require and resource an organization’s conformance, compliance, or certification to the ISO 55000: 2014 Asset Management Standard. These people are referred to as “top management” (as defined in the Standard). But asset-management leadership doesn’t have to mean a designated person in the executive suite.

Leadership behaviors can be exhibited anywhere in an organization, from top management to people at all levels of an organization, i.e., a leadership team. That’s what we want and need for establishment of fully functional asset-management systems.

The ISO 55000:2014 Asset Management Standard could play a major role in industry in the coming years. Keep up to date with our ongoing coverage of this Standard at maintenancetechnology.com/iso55k.

The ISO 55000:2014 Asset Management Standard could play a major role in industry in the coming years. Keep up to date with our ongoing coverage of this Standard.

Asset-management structures

When we envision an leader as “someone” who is responsible for establishing an organization’s asset-management system, we’re probably asking way too much of a single person. An asset-management leader should be a person who is actively involved in setting expectations, providing resources, holding people and teams accountable, and generally setting the direction and maintaining progress toward a goal. Organizations should have many asset-management leaders.

To clarify: Each phase of the asset-management life cycle is likely embodied in different sub-divisions of the greater organization, each with their own hierarchy or management structures. There should be an asset-management leader—one who is responsible for providing leadership—within each of these organizational sub-divisions. This divisional leader is also part of the bigger, overall asset-management leadership team governed by top-level management.

Asset-management culture

Top management, as discussed in the ISO 55000 documents, refers to the top-level business decision makers. In this role, it’s unlikely that these managers would be asset-management leaders. But they’re definitely in an asset-management leadership role through their responsibilities to stakeholders.

All too often, the terms “leader,” “leadership,” and “management” are used interchangeably. In the ISO 55000 area, there is a key difference. Those in top management define (by design or default) an organization’s asset-management culture. They set the overarching tone and tenor of the organization’s behaviors in the quest for establishing an asset management system (whether related to ISO 55000 or something else). They inspire and motivate (and/or require) an organization to take action through the hierarchy of asset-management leaders.

An asset-management culture depends on leaders and leadership at all levels and sub-divisions of an organization as they align for establishing a life-cycle asset-management system. I believe this is what is meant by “Leadership and commitment from all managerial levels is essential for successfully establishing, operating and improving asset management within the organization.” MT

Bob Williamson, CMRP, CPMM, and a member of the Institute of Asset Management, is in his fourth decade of focusing on the people-side of world-class maintenance and reliability in plants and facilities across North America. Contact him at RobertMW2@cs.com.

237

8:25 pm
May 15, 2017
Print Friendly

Uptime: Engage the New Workforce

bobmugnewBy Bob Williamson, Contributing Editor

I’m worried that we’re not effectively engaging younger, newer employees in our reliability-improvement initiatives,” lamented a participant in one of my workshops. “How should we be working with them?”

That type of concern and question is becoming more common in today’s older industrial facilities—and for good reason. The ways we employed, trained, and engaged previous generations of employees won’t necessarily work going forward. Now is the time to re-tool our approaches. Here are some insights into those generations and how to engage their members in the workplace.

The divide

Think about the differences in your family, i.e., your grandparents, parents, yourself, and your children. Each generation is different, based on experiences with different technologies, socio-economic conditions, educational approaches, and politics, among other things. Let’s look at four generations and various factors that formed their lives:

• Matures (born before 1945): Strong family and community ties, WWII and Pearl Harbor, post-WWII economic boom, manned space flight.

• Baby Boomers (born between 1946 and 1964): Cold War, Civil Rights movement, Vietnam War, political assassinations, feminist movement.

• Gen X (born between 1965 and 1977): Disintegrating families, unemployment, advent of personal computers and the Internet, Space Shuttle explosion, end of the Cold War, Berlin Wall destruction, Gulf Wars.

• Gen Y, aka “Millennials” (born between 1977 and 2000): Oklahoma City bombing, 9-11 terrorist attacks, growth of school violence, global warming, increasing divorce rates, advent of smart phones and other technologies, everybody gets a trophy.

Millennials learn, and in turn, approach work much differently than past generations.

Millennials learn, and in turn, approach work much differently than past generations.

The formative years

Major generational events combine with situations in an individual’s formative years to influence their behaviors, beliefs, expectations, and interests. During the late 1960s and into the 1970s, Dr. Morris Massey described three major life-shaping periods:

• Imprint Period (birth to 7 years of age): We absorb everything, accepting much of it as true, especially coming from our parents. The sense of right and wrong, good and bad is learned here.

• Modeling Period (between 8 and 13 years): We copy people, primarily our parents, and other people who impress us (community leaders and teachers, for example). We try different things to see how we feel about them.

• Socialization Period (between 13 and 21): We tend to look for ways to depart from our earlier programming and are significantly influenced by our peers. Media (social-media) messages, especially those that seem compatible with peer-group values, have a major influence.

The challenge in a workplace is how to effectively engage (and value) inherent generational differences, despite the diverse, life-shaping events and experiences of peoples’ formative years.

Focusing on Millennials

Get ready. Millennials will make up 75% of the workforce by 2025, preceded by record departures of seasoned, skilled workers. The bad news is Millennials often lack the skills, knowledge, and experiences employers are seeking in replacements for their disappearing skilled personnel. While more people may make up the labor pool, it’s the skills shortages (skills gaps) that will prevent them from securing employment. According to a 2015 report titled “The Skills Gap in U.S. Manufacturing: 2015 and Beyond,” from Deloitte (deloitte.com, New York) and The Manufacturing Institute (themanufacturinginstitute.org, Washington), in the next decade, nearly 3.5-million manufacturing jobs will likely need to be filled. Because of the skills gap, 2 million of those jobs are expected to remain open.

Knowledge transfer and reliable training processes are rapidly becoming a more-than-compelling need in many business sectors. The traditional training model, however, is mostly inefficient, ineffective, and inconsistent with how Millennials learn. Still, the task at hand involves more than training them—it’s engaging them.

Millennial expert Christine Hassler offers some pointers on how to work with and benefit from this generation. It starts with understanding that members of this group are typically over-parented, self-expressive, optimistic, globally oriented, and wanting to make a difference. They tend to be multi-taskers, entrepreneurial thinkers who value freedom and flexibility, but believe that organizations rarely make use of their skills. According to Hassler, prospective employers can leverage these characteristics by offering what these job seekers want most:

• diverse opportunities based on individuality and creativity
• fair compensation for work that has a purpose
• a great place to work, i.e., fun and ethical
• a sense of belonging and social engagement flexibility.

Attracting Millennials can be enhanced by employers that:

• invest in technology and social media
• have a story to tell, a brand
• leverage current Millennial employees in recruiting
• embrace social and environmentally conscious practices
• re-invent the workplace environment
• address how their goals can be achieved by working here.

Hiring Millennials may require employers to overhaul their practices and:

• recruit, hire, and train for skills mastery
• look for leaders, out-of-the box thinkers, and optimists
• deploy creative application and interview processes
• upgrade employee orientation and on-boarding programs
• include Millennials in interview and selection processes.

Retaining newly hired Millennial employees can be improved by employers that try to:

• make the first day unforgettable
• offer feedback, flexibility, and transparency
• create a fun workplace with a sense of purpose.

Managing Millennials must be accomplished by leveraging their expectations:

• provide frequent feedback
• provide clear expectations with accountability
• coach, rather than direct (see the following “Situational Leadership” model)
• challenge and empower them
• inspire them (be a strategic and aspirational thinker)
• add the human element
• be open and transparent
• show respect for all people at all levels
• get to know employees on a personal level
• conduct weekly check-in
• provide interpersonal training and personal development
• provide technology platforms for feedback sharing.

Developing Millennials into leaders must go beyond traditional programs and begin early in their employment through:

• cross-functional expertise and rotational learning
• apprenticeship models with assigned mentors
• involvement with “high-ranking” executives
• intrapreneurship (defined as workplace innovation)
• ongoing training and personal development
• formal knowledge-transfer processes
• connection to the bigger “why” (beyond “what” and “how”).

Engagement is ‘situational’

Leading and empowering Millennials is where the proven principles of Ken Blanchard’s “Situational Leadership” framework for employee development can come into play. Adapting our leadership styles to fit individual employee needs will be one of the most important methods you can use to engage Millennial employees.

According to Blanchard, the four sequential leadership styles in the Situational Leadership model include directing, coaching, supporting, and delegating. These leadership styles are aligned with four sequential stages of individual employee development:

• low competence/high commitment
• some competence/low commitment
• higher competence and/or variable commitment
• high competence/high commitment.

Efforts to empower and engage employees, especially Millennials, must build on what motivates them. How we lead them to be productive members of an organization is an integral part of that motivation.  MT

References:

Dr. Morris Massey, What You Are is Where You Were When, 1986 video program, Enterprise Media, MorrisMassey.com.

Christine Hassler, “Bridging the Generational Divide Attracting, Engaging, and Managing a Multi-Generational Workforce” (keynote), millennialexpert.com.

“Situational Leadership” training program, The Ken Blanchard Companies, KenBlanchard.com.

Bob Williamson, CMRP, CPMM, and member of the Institute of Asset Management, is in his fourth decade of focusing on the “people side” of world-class maintenance and reliability in plants and facilities across North America. Contact him at  RobertMW2@cs.com.

300

8:19 pm
April 13, 2017
Print Friendly

Uptime: Aligning ‘Our’ Goals With Business Goals

bobmugnewBy Bob Williamson, Contributing Editor

Cut expenses. Boost performance. Those are among the goals of many businesses. Frequently, though—too frequently, in fact—maintenance managers find themselves between a rock and a hard place: improving maintenance while reducing costs.

By its very nature, the maintenance function is a business expense. As an extreme, we could eliminate the entire maintenance budget as a cost-cutting measure. Having done that, the business would suffer under significantly more expensive run-to-failure equipment-management practices, leading to increased costs of repair and lost revenues from unpredictable/unplanned equipment and facilities downtime.

Maintenance can be defined as “actions for sustaining a desired level of equipment performance.” From a maintenance professional’s perspective, the big picture is more about sustaining desired levels of business performance.

Let’s be clear, we could be discussing the maintenance department as we explore the principles of aligning maintenance with business goals. But, when reviewing the scope of maintenance work, we must think and look well beyond the maintenance department and consider the maintenance function, regardless of the organization(s) performing the work. This is a crucial distinction when it comes to the alignment of goals.

Typically, the maintenance department is perceived as the party that’s responsible for the health and well being of equipment and facilities. Yet, many (if not most) of the causes of unhealthy and poorly performing equipment and facilities go well beyond the scope of the maintenance department. As a result, maintenance basically gets to address the symptoms, not the true causes, of problems.

Efficiency vs. effectiveness

The noted business-management consultant, author, and educator Peter Drucker defined efficiency and effectiveness this way:

• Efficiency: Doing things right—able to accomplish something with the least waste of time and effort. (Focuses on process).

• Effectiveness: Doing the right things—producing the intended or expected result. (Focuses on results, outcomes, throughput).

Just because maintenance is performed efficiently does not necessarily mean that it is effective.

NASCAR race-team pit crews offer an excellent example. An efficient pit stop can be performed in record time. The pit crew’s work processes are highly efficient. But, if they always change four tires while only two tires are showing signs of performance-handling wear, pit stops are ineffective.

In the business context of auto racing and pit stops, it’s not the responsibility of the pit crew (let’s call it the “maintenance crew”) to determine how many tires to change. The crew chief (let’s call him or her the “maintenance manager”) reviews previous tire-performance data, compared with vehicle handling, as reported by the driver, and determines the tire-changing tasks to be completed during each pit stop.

After all, the goal of a race is not only flawless work execution (efficiency) by the pit crew, but also performance of pit stops in a manner that ensures the business goal of winning the race is a top priority (effectiveness).

All too often, we focus primarily on measuring and improving maintenance efficiency, including, among other things, preventive-maintenance (PM)-schedule compliance, mean time to repair, actual hours/planned hours, planning variance, and preventive/predictive-maintenance (PM/PdM) yield. While activities (or actions) associated with these measurements and improvements lead to excellent maintenance practices, they must be balanced with maintenance effectiveness.

Aligning maintenance functions with business goals assures maintenance effectiveness. Maintenance actions then contribute to the goals of the business.

This business line of sight reflects alignments from the upper-most purposes of an enterprise, down to plant-floor work execution.

This business line of sight reflects alignments from the upper-most purposes of an enterprise, down to plant-floor work execution.

Line of sight

I’ve discussed asset-management standards and the importance of aligning an organization’s work processes with their goals in numerous Maintenance Technology columns over the years. Both the PAS-55:2008 Asset Management Specification and ISO55000: 2014 Asset Management Standard refer to the importance of aligning asset-management practices to the goals of the business. PAS-55 referred to this alignment as a “line of sight” designed to assure the effectiveness of such practices.

Let’s use the chart on p. 6 to drill down through a typical line of sight, from the upper-most purposes of an enterprise, all the way to work execution on the plant floor. Since business terminology varies widely, here are my clarifications and some examples for this diagram:

• Business Opportunity (our market/customers/requirements)

• Shareholder/Owner Expectations (return on the investment)

• Organization’s Mission-Vision (who we are and where we want to be)

• Strategic Themes, Policy Statements (guiding principles)

• Strategic Business Plan (what and why)

• Business Goals (what we want to accomplish)

• Key Performance Indicators (measuring what is critical: financial, customer, process, people, and/or regulatory)

• Objectives/Strategic Initiatives (what and how)

• Organizational Structures (our divisions/cost centers/departments/shifts/crews)

• Job Roles & Responsibilities, Job Requirements (who, what, where, when)

• Work Processes, Methods, Procedures, Systems (how work should/shall be performed)

• Work Execution (performance management—how well).

Top-down/bottom-up

There are two ways to approach line-of-sight alignment. Most organizations view it from a top-down perspective to define their respective business models and what they should measure to determine whether they’re on a successful path. Their KPIs (key performance indicators) often provide necessary measures of success.

From a bottom-up perspective, we see Work Execution reflecting the fundamental actions required to meet the Business Goals as measured by the KPIs. The two paths (top-down and bottom-up) meet in the middle—aligned toward the same KPIs.

Connecting and aligning Work Execution to the KPIs are some of the most critical links in the process. The KPIs can be made actionable by linking to the appropriate Equipment Utilization Losses (see Uptime, March 2017).

Specific Objectives or Initiatives are determined from the KPIs; Organizational Structures are defined; specific Job Roles & Responsibilities (in various departments) are defined; and Work Processes are developed to define how work is to be performed. All of this leads to the flawless Work Execution that’s necessary to achieve the Business Goals (as in the pit crew example).

Seeking alignment

Aligning the work culture (an organization’s behaviors) with a line of sight to the organization’s business goals begins by communicating the Business Opportunity and how the organization needs to pull in the same direction to take full advantage of it.

Linking maintenance to business goals is only one of many alignments that must exist in successful enterprises. Thus, we must remember that a maintenance department alone cannot effectively maintain equipment and facilities. More and more, we’re learning that the maintenance function is a team sport that requires multiple disciplines (players) brought in at different stages in the life cycle of a physical asset.

Paying attention to maintenance-work processes and efficiency are good things to measure. It’s when we align the outcomes of those processes and efficiencies with business goals that maintenance truly becomes effective in a business model. MT

Bob Williamson, CMRP, CPMM, and member of the Institute of Asset Management, is in his fourth decade of focusing on the “people side” of world-class maintenance and reliability. Contact him at RobertMW2@cs.com.

81

6:46 pm
April 13, 2017
Print Friendly

Guide Helps Measure Asset-Management Maturity

The ISO 55000:2014 Asset Management Standard could play a major role in industry in the coming years. Keep up to date with our ongoing coverage of this Standard at maintenancetechnology.com/iso55k.

The ISO 55000:2014 Asset Management Standard could play a major role in industry in the coming years. Keep up to date with our ongoing coverage of this Standard at maintenancetechnology.com/iso55k.

By Bob Williamson, Contributing Editor

The asset-management journey is rich with ideas, opinions, and recommendations. As organizations focus on life-cycle asset management, many performance breakthroughs have been achieved. It’s wise to continue to learn from these asset-management examples and tools as they become available.

A quick read of the ISO 55001-2014 Asset Management Standard offers detailed descriptions of minimum requirements for an effective asset-management system, rather than a comprehensive checklist. Plant leaders, though, could benefit from a more practical guide to asset-management excellence.

The Institute of Asset Management (IAM, London, theiam.org) has compiled an insightful document that helps readers understand the subjects relating to an asset-management system, as codified in ISO 55001, and to the overall asset-management discipline. Titled Asset Management Maturity Scale and Guidance, it can serve as a progress guidance tool in an organization’s asset-management journey.

Screen Shot 2017-04-13 at 1.41.00 PM

At the heart of the IAM publication is the “Asset Management Landscape” (2nd Edition). Assembled by the Global Forum on Maintenance and Asset Management (GFMAM, Zurich, gfmam.org), it provides a broad overview of the asset-management discipline and a structured body of knowledge spread across 39 different, yet related, subjects, organized into six groups:

• Strategy & Planning
Asset Management Decision Making
Lifecycle Delivery
Asset information
Organization & People
Risk & Review

The Asset Management Maturity publication aligns the 39 asset-management subjects with a six-level maturity scale. An invaluable tool for assessing an organization’s asset-management progress, the document also offers specific recommendations for improvement. The accompanying table summarizes this maturity scale. It can be used as a template with each of the 39 subjects.

Each subject spans two pages in the Asset-Management Maturity publication. The first page is organized with the six maturity levels (0 to 5), shown in the summary table here, with additional maturity definitions.

The second page offers important insights into achieving excellence in the asset-management journey. Each subject is put into context with criticality, scale, and complexity to help define Level 5 maturity. Related subjects from the list are also referenced. Notes and illustrations from the developers also are included to help you on the journey to asset-management excellence. MT

robertmw2@cs.com

References

ISO 55001-2014 Asset Management Standard, (1st Edition), Jan. 2014. The International Organization for Standardization (iso.org)

Asset Management Maturity Scale and Guidance, (Version 1.1), June 2016. Institute for Asset Management (theIAM.org)

“Asset Management Landscape,” (2nd Edition), Mar. 2014. Global Forum on Maintenance and Asset Management (GFMAM.org)

242

3:23 pm
March 13, 2017
Print Friendly

Uptime: Improve Equipment Effectiveness

bobmugnewBy Bob Williamson, Contributing Editor

Equipment or, for that matter, any physical asset in our plants and facilities is generally expected to be efficient and effective. In other words, it’s expected to do what it was designed to do under defined operating conditions for specified periods of time. It doesn’t seem like we’re asking too much: RCM (reliability-centered maintenance) focused on improving equipment maintenance with a generally accepted definition of efficiency and effectiveness.

Another, broader perspective of equipment  efficiency and effectiveness, however, also deserves our consideration. This concept was introduced in the 1980s with the concept of    Total Productive Maintenance (TPM).

When TPM hit U.S. shores in the mid to late ‘80s, it was supposed to help us develop organization-wide work cultures for improving equipment effectiveness. The five basic, interdependent “Pillars of TPM” defined principles that made the process work. Coupled with the Theory of Constraints, those principles should have launched a paradigm shift in equipment-performance improvement. In fact, in 1990, I was constantly insisting that TPM would become the predominant equipment-effectiveness strategy of the 21st century. Little did I realize it could become so de-constructed that it would no   longer represent an effective business-improvement process.

Unintended consequences

What changed? TPM’s intent of improving equipment effectiveness devolved into the widespread practice of “operator care.” [Specifically, the Autonomous Maintenance (AM) model for training turned into yet another spin on operator care as being synonymous with TPM.]

As guided by the first Pillar of TPM, the “focused-improvement” principle morphed into a calculated metric of Overall Equipment Effectiveness (OEE). In turn, OEE launched itself into a mega-metric, well beyond its intended use to compare a machine to itself over a period of time.

Of the original five principles (Pillars) of TPM, two were widely embraced by many implementations: operator care/autonomous maintenance and OEE-percentage. Much to my dismay, this reality debunked my previously mentioned “predominant equipment-effectiveness strategy” prediction. Unfortunately, operator care and OEE do not define true TPM.

But it’s not too late to learn from TPM. Given industry’s skilled-worker shortages, demand for significantly improved equipment performance and reliability, and dependence on rapidly growing new technologies, true TPM will be the answer, whether labeled “TPM” or not.

Consider TPM’s expressed aim to improve equipment effectiveness by engaging the entire organization. The first Pillar, “improving equipment effectiveness by eliminating the (six) major losses,” led to a growing list of such losses (or causes of poor performance). The bottom line is that the starting point for TPM-based improvements is the identification of the problems to be eliminated.

Let’s explore those two foundational principles: eliminating the major losses and engaging the entire organization. Improving equipment effectiveness begins and ends with them (and all remaining Pillars of TPM rely on them.)

This diagram helped plant personnel recognize fundamental metrics and measurements for improving bottom-line business performance, as well as deploy plant-floor business-oriented metrics in critical bottleneck areas.

This diagram helped plant personnel recognize fundamental metrics and measurements for improving bottom-line business performance, as well as deploy plant-floor business-oriented metrics in critical bottleneck areas.

What gets measured gets done

Building on the original TPM teachings of the Six Major Losses, let’s jump into what I refer to as “actual equipment losses.” Identifying them is central to improving equipment effectiveness, as well as to getting organizational buy-in and ownership of root causes and sustainable corrective actions.

The accompanying diagram was developed for a client organization to help personnel recognize metrics and measurements that must exist as a foundation for improving bottom-line business performance, as well as help in deploying plant-floor business-oriented metrics in critical bottleneck areas.

Equipment capacity losses

Because the plant-improvement project focused primarily on improving production flow through the manufacturing processes, it was important to understand Equipment Capacity. A fundamental re-definition was necessary since the site had historically linked the concept to standard production rates. Downtime was treated separately, and in very general terms.

Basic equipment capacity was ultimately defined as the design capacity or historical best. Capacity Utilization losses occur when plant leadership makes a conscious decision to not run the equipment. Consider these losses “Planned,” as shown in the diagram.

Equipment utilization losses

Losses occurring when equipment is scheduled to run are categorized in the diagram as Equipment Utilization losses. As shown, some of them, i.e., Unplanned Downtime, Efficiency, and Yield losses, are straightforward. Setup/Changeover losses, though, can be planned or unplanned.

Setup/Changeover losses occur as Planned when those actions are accomplished properly, in the designated timeframe. When setups/changeovers are not completed within the planned timeframe and/or not performed properly, they should be categorized as Unplanned Downtime losses.

While the literature is rich with standard terms for equipment-related losses, there’s a significant advantage in leveraging terminology that is commonly used at a site. The diagram shows a combination of traditional definitions used around the client’s operations, with the addition of new loss descriptions: No or Defective Material, No Operator, and the granularity of three Yield losses.

Material: All bottleneck equipment in the plant depended on material flow to the machine. Unplanned Downtime should be captured whenever material is not available or when it’s damaged or incapable of being run at acceptable rates.

No Operator: Occasionally, some of the plant’s most critical equipment couldn’t be operated due to the absence of a skilled operator. Regardless of the reason, these incidents are logged as a type of Unplanned Downtime: No Operator.

Yield & Waste: Yield losses have a negative impact on planned flow through the equipment and the rest of the plant. The site is now tracking three types of them as part of its flow-improvement project and a separate waste-reduction initiative.

Product Rework losses have a triple impact on the business, i.e., waste of materials, unproductive machine time, and the cost of committing additional labor and machine time to rework the defects or sort the good items from   the bad items.

Despite the amount of actual material waste being created, the plant didn’t historically capture materials lost due to equipment Startups and/or Setups (including Adjustments). This type of loss also contributed to inaccurate inventory downstream, leading to additional small lot re-runs.

Tapping the hidden factory

Plant-floor employees and senior management, and all those in between, should be able to understand the impact of equipment-related losses that have a direct line-of-sight to business goals and objectives.

Tracking Equipment Effectiveness losses and then focusing on eliminating the impact of the “critical few” depends on a collaborative effort that begins with equipment operators. Engaging them and the Operations leadership team in loss-elimination efforts is not only a key component of TPM, it’s an essential element of any reliability-improvement initiative. MT

Bob Williamson, CMRP, CPMM and member of the Institute of Asset Management, is in his fourth decade of focusing on the “people side” of world-class maintenance and reliability in plants and facilities across North America. Contact him at RobertMW2@cs.com.

246

8:11 pm
February 10, 2017
Print Friendly

Uptime: Problem Solving — A New Competitive Challenge

bobmugnewBy Bob Williamson, Contributing Editor

What do robots, integrated automation systems, the Industrial Internet of Things (IIoT), ISO 55000 Asset Management Standard, TPM, RCM, Lean Manufacturing, and re-shoring of jobs have in common? Yes, they’re here, now, and defy many traditional ways of managing a business. But there’s more. The rapid implementation of these performance-improvement technologies and solutions has also accelerated the demand for systematic problem solving.

In my opinion, problem solving is the new competitive challenge thrust upon us by global competition, shortened product cycles, and the explosive adoption rate of integrated and interdependent technologies. The big question, with regard to remaining competitive, is how do we develop a problem-solving workplace?

Let’s start with the definition of a “problem.” According to businessdictionary.com, the word means “a perceived gap between the existing state and a desired state, or a deviation from a norm, standard, or status quo.” Based on that definition, for a problem to be a “problem,” there must be a standard from which we can determine if there is a problem, i.e. something defining the normal condition. This is where standard work (a defined way for performing a task) comes in. The same goes for reliability standards (equipment doing what it’s supposed to do), quality standards (defect-free products), and safety standards (injury-free workplaces). Given the fact that problems are deviations from expectations, identifying and solving them without standards can fuel guessing games of chasing false problems.

Determining, then implementing, the correct solution and proving its success, is the end goal.

Determining, then implementing, the correct solution and proving its success, is the end goal.

Before we can even begin thinking about problem-solving tools, however, we must consider the human side of the issue: Does a person have a problem-solving aptitude and, if so, what type? Here are several styles you might have encountered:

“Ostrich” approach. Some view problems as negatives, as opposed to opportunities for improvement. They tend to avoid considering solutions: “We can live with this problem, if we just . . . ”

“Denial” approach. Some people routinely fail to recognize or admit that the problem exists: “That’s not a problem. It happens all the time.”

“Always did it that way” approach. For some people, problem solving is more intuitive than systematic and structured. Past practices tend to frame their solutions to a problem: “Let’s try what we did the last time something like this happened.”

“Remove and replace” approach. Some specialize in the trial-and-error method (some solutions work, others don’t): “I’ve replaced most of the parts in the unit and it finally started working.”

“Yes, but” approach.  Someone will miss the problem entirely, yet already be working on a solution: “I hear what you’re saying, but here’s what we need to do.”

“Work around” approach. Some people will look for ways to work around the problem rather than look for the cause: “I know it quit working, so we just put in a by-pass circuit to keep it running.”

“What do we know” approach. The most successful problem solvers take time to better understand the problem before beginning a systematic process of identifying options to pursue: “What happened? Was anything changed here before the problem occurred? Who was there at the time?”

Problem solving is more than RCA

Analyzing problems to determine their causes is a scientific discipline, of which there are a variety of proven processes. One key point here is “discipline.”

Root-cause analysis (RCA) not only requires a proven step-by-step process, it also depends on the human-performance discipline to adhere to that type of process—a standardized problem-solving approach embraced by the organization.

Another phase of problem solving is arriving at and establishing solutions that prevent a problem or its effects from recurring (or continuing). Arriving at a solution can also be an iterative process of trying potential solutions and analyzing the outcomes until a sustainable and affordable solution is determined.

RCA is more than problem solving

Whenever I think about problem solving, I’m reminded of my conversation with auto-racing’s Ray Evernham nearly 20 years ago. At the time, he was still serving as crew chief for Jeff Gordon, who, late in the 1992 Winston Cup season, had begun driving for Hendrick Motorsports, a top-level NASCAR race team.

As a consultant to the organization, I was focusing on Hendrick’s use of root-cause failure analysis in its problem-solving process (a very robust and rapid one). How delighted I was when Evernham explained that the team also performed root-cause “success” analyses, i.e., analyzing what went unexpectedly right, whether it was a win, an ultra-fast pit stop, or a zero-failure race. Wow.

A root-cause success analysis can turn the tables—from eliminating problems to repeating successes. Seeking answers to “what can we do consistently better,” which is a critical success factor in motorsports, can be just as valuable in plant and facility operations.

Troubleshooting is not necessarily solving problems

In the world of industrial and facilities maintenance, troubleshooting varies widely. At times the troubleshooting process involves removing and replacing parts one at a time until the defective one is located. (Not too scientific, but a common practice.)

Scientific troubleshooting requires a troubleshooter to truly understand the inner working of a device that is harboring the fault. That includes understanding components, systems, circuits, hardware, software, and firmware.

Again, the more the technician understands the device the more efficient and effective the troubleshooting process becomes.

But troubleshooting is only half the battle. Determining, then implementing, the correct solution and proving its success, is the end goal.

(EDITOR’S NOTE: For some troubleshooting tips, see this month’s feature “Boost Troubleshooting Skills at Your Site.”)

Problem-solving mindsets

The ability to troubleshoot, perform root-cause analyses, and solve problems (or improve performance) requires disciplined human performance, i.e., adherence to proven processes.

Furthermore, those doing the problem solving must have the aptitude and ability to think through the variables in the problem-solving process and the associated equipment conditions. They must be able to understand what a pre-fault (or normal) conditions are and must be able to recognize fault conditions.

In my generation, we grew up taking things apart. Fixing things. Building things. We had access to tools and looked for things to do with them.

Shop classes and working on cars and other things around the house or farm helped build our confidence and respect for how “stuff” worked. Sometimes we got hurt (nothing serious); sometimes we damaged things. But that’s how we learned many of our skills.

Over time, many of us developed mechanical aptitudes along with a variety of abilities to put them to work. A solid mechanical aptitude and an understanding of basic cause-and-effect relationships are central to problem solving.

Sadly today, we’re witnessing the impact of exposing two generations to few, if any, shop classes. Individuals entering the workplace without problem-solving aptitudes and abilities are at a severe disadvantage. So are our industries. Growing effective problem solvers is becoming increasingly difficult in today’s plants and facilities.

Building a problem-solving mindset (or paradigm) in your organization takes people with the right skills and lots of practice. It also calls for a consistent and systematic approach to solving problems.

And, one more thing: A problem-solving mindset must be set from top management as a way of doing business. In the meantime, try testing your own skills with Mind Tools’ “How Good is Your Problem Solving?” online assessment. MT

Bob Williamson, CMRP, CPMM and member of the Institute of Asset Management, is in his fourth decade of focusing on the “people side” of world-class maintenance and reliability in plants and facilities across North America. Contact him at RobertMW2@cs.com.

Navigation