Author Archive | Ken Bannister

40

8:12 pm
June 15, 2017
Print Friendly

Manage Used and Waste Oils Wisely

Heed these tips to simultaneously befriend your budget and the environment.

This storage area for used and waste oils is problematic.

This storage area for used and waste oils is problematic.

By Ken Bannister, MEch Eng (UK), CMRP, MLE, Contributing Editor

There was a time when the terms “used oil“ and “waste oil” meant the same thing and could be used interchangeably. Not anymore. Federal, state, and local environmental regulations have effectively redefined both terms as distinct oil states that must be dealt with in very different ways. Because legislation differs among authorities and jurisdictions, it’s the responsibility of plant owners/operators to contact appropriate authorities for clarification on regulations under local law regarding the definition, management, and disposal of the used and waste oils at their sites.

Identifying ‘used’ oil

Used oil is generally defined as a product refined from crude oil or any synthetic oil that has been used and, as a result of such use, is contaminated and unsuitable for its original purpose due to the presence of impurities (water or dirt) or the loss of original properties (through loss of additives).

Like virgin stock oils, used oil should be thought of as a resource that can be reprocessed in situ with an industrial filter cart to clean and polish the oil while it’s in the machine reservoir. Or, it can be shipped to an oil recycler where it will be treated using settling, dehydration, filtration, coagulation, and centrifugation to remove contaminants and, if needed, refortified with its required additive package and placed back into service—all at a fraction of the cost of new oil, with no disposal management and associated fees.

Alternatively, used oil can be re-refined into lubricant or fuel oil products that can legally be sold as new oil. Re-refined products must be processed to meet the same stringent requirements and standards set for their virgin-oil counterparts. Once the re-refining is completed, the products are considered brand new oils.

Less expensive to manufacture and purchase, re-refined products conserve virgin-oil stocks—10 barrels of crude are conserved for every barrel of re-refined new oil made from used oil—and minimize the negative environmental impact of oil disposal.

Typical used-oil candidates for re-refining include:

• compressor oil
• electrical insulating oil (except that likely to contain PCBs)
• crankcase (engine) oil
• gear oil
• hydraulic oil (non-synthetic)
• industrial process oil
• neat (undiluted) metalworking fluids and oils
• refrigeration oil
• transfer oil
• transformer oil
• transmission oil
• turbine oil.

In some jurisdictions, used oil is allowed as a fuel oil and can be burned for heat.

Although used oil is generally considered a commodity, in a handful of states it is viewed as a hazardous material and, as such, must be treated as hazardous waste when stored for disposal. Plants must check with their local authorities in this regard.

Identifying ‘waste oil’

Waste oil differs from used oil in that it reflects new oil that has become contaminated and, consequently, is deemed no longer useful for service. In the view of many jurisdictions, such oil is a hazardous waste. Used oil, cross-contaminated with chlorinated products or other chemical products, must be treated as a hazardous liquid and disposed of accordingly. Once again, it’s imperative for facility personnel to check with their local authorities to understand the legislative definitions and requirements.

Management tips

Collecting used and waste oil on site is a natural occurrence in any industrial plant and allowable in all jurisdictions. There are, however, regulations regarding its labelling, storage, spillage, and disposal.

The photo above reflects a typical outdoor storage area for the collection of used and waste oils in a plant. Although it shows a designated area, it exposes a very poor—and expensive—oil-management approach that contravenes most of today’s regulations in the following ways:

Used- or waste-oil tanks must be clearly labelled and accessible.

The tanks in the photo are grated pits that would be classified as confined spaces and not allowed in many jurisdictions. Only one of these two restricted-access pit tanks is labelled as “Waste Oil,” a fact that’s partially obscured by the barrels.

Given the proximity of the two pits to each other, poor access to the rear one, and their uncontrolled exposure to outside elements, most regulatory agencies would probably classify oil pumped from both of those tanks as hazardous waste, requiring costly disposal procedures.

Recommendations

• Decommission the pits.
• Install two above-ground steel tanks in accordance with regulations, designating each separately for used oil and waste oil. For correct tank sizing, work with your oil-disposal company to ascertain its minimum and maximum haulage capability.
• Clearly label each tank in accordance with local regulations.
• Move tanks into a controlled indoor space or cover the area  to protect from outside elements.
• All tanks are to be bunded (placing the tank inside a leak proof bermed concrete, asphalt, or steel/plastic catch-basin control area. The bund must equal or exceed the volume of the largest tank in that bunded area.
• Padlock tanks shut when not in use.

Dedicated oil-transfer containers must be used to control cross-contamination.

In the photo example the company has a variety of different-sized open pails containing non-descript oils and what appears to be a white chemical product. Once again, all of those fluids are exposed to the elements and to each another. That automatically makes all of them hazardous waste. The only way to be sure used oil does not become contaminated with hazardous waste is to never mix it with anything else and store used oil separately from all solvents, chemicals, and other incompatible products.

Recommendations

• List all oil and non-oil products used in the plant and work with your oil-disposal partner to decide which products are to be treated as recyclable used oil, waste oil, and hazardous materials (chemicals and non-oils).
• Use closed, dedicated containers for used oil, waste oils, and other products stored in the same area.
• Log any bulk transfer of oils into the tanks.
• Record all products being held in the area on a manifest and log their release to the disposal company.
• Retain all records in a accordance with the company’s record-retention schedule.

Spill controls are mandatory.

Although the photo above also shows evidence of a contained spill around the oil pallet, the contaminated spill material hasn’t been removed and is itself an uncontained, contaminated oil product.

Recommendations

In accordance with most safety legislation, every oil-storage facility will generally be required to have and keep the following information and equipment up to date:

• spill contingency plan and procedures
• spill-control equipment
• fire plan
• emergency-evacuation plan.

If a site’s oil-storage building is indoors or in a closed area, it will require ventilation as regulated by local building codes.

The cost of doing business

Disposing of hazardous waste can be time-consuming and costly. Research local oil recyclers and hazardous-waste haulage companies to determine what they charge for their services. Some will handle both oil reclamation and disposal of hazardous waste. Such organization should be able to work with your site to set up a value-based program that adheres to all local regulations. MT

Editor’s Note: Recycling and disposing of old oil is closely associated with lubrication-consolidation efforts in a plant. This feature addresses that topic with insight from Des-Case.

Contributing editor Ken Bannister is co-author, with Heinz Bloch, of the book Practical Lubrication for Industrial Facilities, 3rd Edition (The Fairmont Press, Lilburn, GA). As managing partner and principal consultant for Engtech Industries Inc. (Innerkip, Ontario), Bannister specializes in the implementation of lubrication-effectiveness reviews to ISO 55001 standards, asset-management systems, and development of training programs. Contact him at kbannister@engtechindustries.com or telephone 519-469-9173.


learnmore2“Store and Handle Lubricants Properly”

“Put Portable Filter Carts to Work”

131

3:36 pm
May 15, 2017
Print Friendly

Put Portable Filter Carts to Work

Portable filter carts play a crucial role in equipment uptime by being able to deliver lubricants at the right cleanliness level and transfer and clean oil while machinery runs. (Source: EngTech Industries Inc.)

Portable filter carts play a crucial role in equipment uptime by being able to deliver lubricants at the right cleanliness level and transfer and clean oil while machinery runs. (Source: EngTech Industries Inc.)

Don’t set up a lube program without one or more of these multi-taskers.

By Ken Bannister, MEch Eng (UK)CMRP, MLE, Contributing Editor

The ability to control contamination is an important aspect of any lubrication-management program, especially where lubricant cleanliness is concerned. A constant supply of clean oil is essential to lubricant life and, more important, bearing life.

One of the most efficient and practical tools available to ensure lubricant cleanliness is the portable filter cart. In a typical industrial environment, portable filter carts are used to transfer and clean all types of lube, gear, and hydraulic oils. The carts’ three principal applications in a lubrication-management program are:

• transferring oil from its original container into a machine reservoir
• pre-filtering and cleanup of virgin stock (new) oil in preparation for machine use
• reconditioning and cleanup of oil currently in service.

In addition, use of specialized filters on the outlet side can extract any free and emulsified water present in the oil.

Functionality

The primary function of any filter cart is to filter fluids. A typical cart design will employ a two-stage filtration approach in which a gear pump is connected to both filters. The inlet, or suction, side is the first-stage, low-pressure side (approximately 5 psid) designed to capture larger contaminant particles exceeding 150 microns in size.

Oil is pumped through the inlet filter to the second-stage, high-pressure (approximately 25 psid) outlet (or delivery side) filter designed to capture much smaller particulate matter that can be filtered to less than 5 microns in size, depending on the filter rating used.

Listen to the latest in a series of monthly lubrication-related podcasts with Ken Bannister. The May podcast focuses on the selection of and best practices regarding portable filter carts.

How clean should your oil be?

Oil cleanliness is universally measured using the ISO 4406 cleanliness code rating system. This is a standard that quantifies the number of contaminant particles, 4, 6, and 14 micron in size, that are present in a 1-ml lubricant sample and compares them with a particle concentration range, resulting in an ISO-range number value.

For example, a 19/17/14 lubricant sample value (typical of new oil) translates to the presence of 2,500 to 5,000 particles >4 microns in size, 640 to 1,300 particles >6 microns in size, and 80 to 160 particles >14 microns in size present in the oil sample.

Screen Shot 2017-05-15 at 10.29.48 AM

When new or virgin stock oil is received from the supplier, many sites believe they are receiving a “ready-to-use” product. This is not always the case, as depicted in the table. New oil is typically received around a 19/17/14 ISO cleanliness level that may only be suitable for non-critical gear systems. All other applications will require the oil to be cleaned and polished by passing it through a filtration system prior to use in service.

The table also notes that “In service” oil dirtier than 19/17/14 is unsuitable for any lubrication or hydraulic system. Such oil will require replacement or cleanup using a kidney loop set-up with a portable filter cart.

The number of passes through the filter cart to achieve the appropriate cleanliness level will depend on the “start” and “finish” cleanliness level and the filter types and rating in use. Oil analysis will be required to establish cleanliness levels. Choosing a suitable combination of pump and filter size/type will require consultation with the filter-cart manufacturer who will need to understand your working environment and type/viscosity of oil(s) you use.

The rate of cleanup (speed) will depend on the reservoir size, pump flow rate, and the cleanliness-rating delta. What can be measured immediately is the time to perform one complete filter pass through the cart, as calculated using the following formula:

(Reservoir size x 7)/filter-cart flow rate =  time for a single-pass filtration

Example: 60 gal. x 7/10 gpm = 42 min. for a single-pass filtration (1 x filtration of reservoir capacity)

If the plant’s lubricants are consolidated and cleanliness levels are known, a matrix can be developed to determine how many passes are required to filter to an acceptable cleanliness level.

Best practices

As in all other facets of maintenance, there are a number of best practices associated with the use of portable filter carts:

• Work with the filter cart supplier to determine the right pump and filter choice for your plant requirements.

• To eliminate cross contamination of lubricants, each filter cart must be dedicated to a single lubricant use for transfer and cleaning of lubricants. Pilot the filter cart program with the most-critical and/or most-utilized plant-lubricant type.

• Always clean the unit after each successful transfer operation, paying particular attention to the wand ends and open drip tray under the filters and pump area. Open oil is a dirt attractant and can be transferred unwittingly if the cart and its components are not kept scrupulously clean.

• Unless specified, most filter carts are sold with open-end transfer wands fitted to the delivery and suction hose ends designed to slide easily into the reservoir openings of the donor and recipient reservoirs. In a program designed to filter contaminants from the oil, this type of delivery fitting can allow moisture and dirt contamination into the respective reservoirs during the transfer process. To combat this, and ensure a contamination-free transfer process, fit the filter cart delivery/return hose ends and reservoir fill/drain ports with quick-lock-style couplings. As the reservoir is now airtight, it will also require a quality desiccant-style breather to be fitted and, in the case of larger capacity reservoir, a closed-loop expansion tank.

• Specify kink-resistant flexible suction and delivery hose to prevent pump cavitation. Clear hoses allow a visual reference of the oil flowing through the lines.

• The cart’s electric motor will require access to electricity. Ensure that an electrical outlet is within easy reach of the unit’s electrical cord. If the cord is short in length, consider mounting a retractable electrical cord caddy on the unit with enough cord length to reach the nearest electrical outlet.

• Paint a lined box similar to a lay-down area as close as possible to the oil reservoir that’s to be serviced. This allows a cart to be positioned and used quickly without obstruction, and within reach of its hose and wand assemblies.

• Place the cart on a preventive-maintenance (PM) check program prior to every use to ensure the unit’s filters don’t go into bypass mode from being too dirty.  MT

Contributing editor Ken Bannister is co-author, with Heinz Bloch, of the book Practical Lubrication for Industrial Facilities, 3rd Edition (The Fairmont Press, Lilburn, GA). As managing partner and principal consultant for Engtech Industries Inc. (Innerkip, Ontario), he specializes in the implementation of lubrication-effectiveness reviews to ISO 55001standards, asset-management systems, and training. Contact him at kbannister@engtechindustries.com, or telephone 519-469-9173.


learnmore2“Lubricant Fundamentals: Lubricant Life-Cycle Management”

“Offline Filtration: Key to Establishing and Maintaining Oil Cleanliness”

320

8:39 pm
April 12, 2017
Print Friendly

Specify the Right Lube-Delivery Line

Fig. 1. Cost should not be a factor in your lubrication-delivery-line choices. While the steel-tubing in this progressive-divider-lubrication system block took more time to install than plastic lines, the additional, but small, up-front cost will pay long-term dividends, especially if leaks or blockages occur.

Fig. 1. Cost should not be a factor in your lubrication-delivery-line choices. While the steel-tubing in this progressive-divider-lubrication system block took more time to install than plastic lines, the additional, but small, up-front cost will pay long-term dividends, especially if leaks or blockages occur.

The wrong lubrication-delivery line can compromise the reliability of your production equipment.

By Ken Bannister, MEch Eng (UK), CMRP, MLE, Contributing Editor

During lubrication-training workshops, I ask participants to name the components that make up a centralized lubrication system. Most will answer in the context of an automated-delivery system by citing the pump, reservoir, metering devices, and pump controller. Rarely do they actually include the lube-delivery lines in their answers.

Lubrication-delivery lines are important and integral components within centralized lubrication systems—be they state-of-the-art automated designs or simple, manual arrangements. Specifying the wrong type can put machinery reliability at risk.

The function of a lubrication-delivery line is straightforward: It must connect a bearing point to a lubricant source (indirectly from a meter or gang block, or directly from the pump) and allow the lubricant to be contained within the line to flow without constriction. As lube-delivery systems are hydraulic in nature, the line must also be capable of withstanding pressures ranging from hundreds to, in some cases, many thousand of pounds-per-square-inch (psi) of pressure.

Listen to the latest in a series of monthly lubrication-related podcasts with Ken Bannister. This edition of the podcast focuses on lubrication-delivery line matters.

Line size and material

Correct choice of size and material is essential if a lubricant-delivery line is to provide reliable service. For the most part, the line plays a passive role within a centralized system and is typically fixed to the side of a machine (the exception being where a lubricated part moves independently of a piece of fixed machinery, in which case, the line is used to provide the flexible connection.) Before a delivery line can be specified, however, a number of basic questions regarding the overall lube-system design must be answered, including:

Fig. 2. The bundled plastic tubing in this progressive-divider system are difficult to individually trace from pump to the lube block. These types of lubrication-delivery lines are also difficult to physically attach to a machine’s frame and, consequently, more vulnerable to damage.

Fig. 2.
The bundled plastic tubing in this progressive-divider system are difficult to individually trace from pump to the lube block. These types of lubrication-delivery lines are also difficult to physically attach to a machine’s frame and, consequently, more vulnerable to damage.

Is this system automated or manual? The answer is crucial in assessing line material, diameter, and wall thickness, which relate specifically to the line’s material-burst pressure rating.

• Manual systems designed to “gang” grease nipples in a central block can be lubricated by grease guns capable of developing as much as 15,000 psi.

• Manual hand pumps and automated systems operate at much lower pressures (between 100 and 2,000 psi).

What type of automated/engineered delivery system is specified? Some system designs require a single line size throughout, whereas others require a main and secondary line of different diameters and flow rates. For example:

• Single-line-resistance and pump-to-point systems are low-pressure systems designed to deliver the total amount of lubricant in one pump cycle. In such systems, i.e., total-loss, single-size-diameter delivery lines are sufficient.

• Single-line positive-displacement-injector, dual-line-injector, and progressive-divider systems require multiple cycles of the pump connected to a larger diameter main line used to rapidly fill the injectors/main distribution blocks, and smaller-diameter secondary lines that connect the metering outlets to the lubrication points,

• Re-circulating-oil systems usually require single-size-diameter delivery lines and a larger-diameter, return-line system.   

How many lubrication points are included in the system and where are they located on the machine? This question is required to map out a central pump location and injector or delivery block locations so the line distances can be measured for material take-off amounts, and in the case of long line lengths, to calculate pressure drop so the correct line diameter(s) can be calculated.

What lubricant type and grade/viscosity are you planning to use? The fact that grease requires higher pressure than oil to move through blocks and lines will affect the choice of line material type and diameter.

Fig. 3. If single-chamfered compression fittings designed for nylon lines are mistakenly used on steel lubrication-delivery lines that require double-chamfered fittings, seals can be compromised, causing leaks at the fittings. (Courtesy Bijur Delimon International, Morrisville, NC, bijurdelimon.com.)

Fig. 3. If single-chamfered compression fittings designed for nylon lines are mistakenly used on steel lubrication-delivery lines that require double-chamfered fittings, seals can be compromised, causing leaks at the fittings. (Courtesy Bijur Delimon International, Morrisville, NC, bijurdelimon.com.)

In what type of working environment will the system be used? Ambient and working temperatures can affect line integrity. Furthermore, if unprotected, copper, brass, and plastic lines can be easily damaged in high traffic areas—especially where lift trucks are used regularly.

What is your budget? Cost should not be a factor in line choice. Figures 1 and 2 show progressive-divider blocks, one piped in correctly rated plastic tubing and the other in steel. While steel tubing (Fig. 1) takes considerably longer to install, the additional, but small, up-front cost can pay long-term dividends, especially when a problem, such as a leak or a blocked line, occurs. The plastic tubing (Fig. 2) is bundled together. making it difficult to individually trace a line from the pump to the lube block. In addition, these lines are difficult to physically attach to the machine frame and, consequently, more vulnerable to damage.

Although the steel lines used in Fig. 1 are dirty, they all have line-ID (identification) tags that make them easy to trace and troubleshoot. The steel-line system also looks more engineered and permanent in comparison with the bundled-plastic-line example.

Once you’ve gone through these six questions, present the answers to your lube-system designer or manufacturer/supplier. These resources can help you determine the best line material for a specific application.

Main problem causes

Problems in lubrication-delivery lines manifest as leaks or blockages. A leaking line will starve lubricant from one or many bearing points and seriously affect the associated production equipment’s reliability. Leaks are invariably found at connection points and line-bend areas. Keep the following in mind:

• Copper lines are very soft and can easily work-harden at bend points if significant machine vibration occurs.

• Nylon lines can be easily over-tightened or not cut square at the connection points. This can cause a leak at the compression fitting.

• If a single-chamfered compression fitting designed for nylon lines is mistakenly used on a steel line, which require a double-chamfered compression fittings (see Fig. 3), they can be compromised, causing a leak at the fitting.

• To reduce cost, nylon lines can be used as a substitute for flexible-hose lines in moving-bearing-point applications found on, among other things, machine slides and rams. Plastic lines, in most cases, are not rated for cyclic repetitive-movement duty.

Blockages in lubrication lines usually occur when they’re pinch-damaged from being hit by a foreign object that crimps or flattens the line shut. This situation causes a line backpressure that can blow the fitting or eventually stall an entire progressive-divider system, starving many bearings in the process. Steel lines offer the best defense against pinched lines.

Best practices

To ensure no bearing is starved after a lubrication-system implementation or line replacement, always pre-fill the lubricant line with the correct grease lubricant before final fastening to the bearing. Or, in the case of oil, operate the lube system and open all bearing points to ensure oil is flowing at each point before final tightening.

Finally, never forget that lubrication-delivery lines are a matter of choice. Reliable lube systems, in turn, depend on making the correct choice. MT

Contributing editor Ken Bannister is co-author, with Heinz Bloch, of the book Practical Lubrication for Industrial Facilities, 3rd Edition (The Fairmont Press, Lilburn, GA). As managing partner and principal consultant for Engtech Industries Inc. (Innerkip, Ontario), he specializes in the implementation of lubrication-effectiveness reviews to ISO 55001 standards, asset-management systems, and training. Contact him at kbannister@engtechindustries.com, or telephone 519-469-9173.

1210

3:23 pm
January 4, 2017
Print Friendly

Understand Motor and Gearbox Lubrication

1701flube01opto

Over-lubricated bearings will produce excess heat through internal fluid friction that can easily be detected with an infrared camera. Photo: Fluke Corp.

Among other factors, motor and gearbox lubrication programs require understanding and a controlled lubrication approach.

By Ken Bannister, MEch Eng (UK)CMRP, MLE, Contributing Editor

When a driven component is required to operate at a speed different than that of the attached motor (driver), a designer can choose from two basic power-takeoff speed-reduction/increaser methods. The first uses pulleys or sprockets of different diameters mounted to the motor and driven shaft, with power transmitted by a connective belt or chain. The second design connects the motor to the driven component through a gearbox, with the motor connected to the gearbox input shaft and the driven device connected to its output shaft.

When viewed in a maintenance-management-system database for lubrication purposes, belt/chain-drive motors and motor/gearbox units are rarely handled with separate PM work orders. Rather, the lubrication requirements are integrated as line items on a much broader machine PM work order. This is fine for sub-fractional and smaller horsepower motors. Larger, more expensive (and re-buildable), motors—usually 20 hp and more (there is no set rule to this)—require treatment as a separate entity from the parent machine, with their own asset numbers and PM/lubrication regimes, so as to compile work-history files. Furthermore, in the case of  motor/gearbox combinations there are two specific entities, one electro-mechanical (motor), the other purely mechanical (gearbox), that are best treated individually when assessing and managing lubrication needs.

Assuring motor and gearbox reliability is the result of good alignment practices and, more importantly, effective lubrication practices.

Bannister on Lubrication

Accompanying this article is the first of a new series of monthly lubrication podcasts with Ken Bannister. This month, he provides additional information about factors involved in lubricating motors and gearboxes.

Motor lubrication

Motors are electro-mechanical devices that turn electrical energy into mechanical energy. Motor magnets and windings are wound on and around a central shaft. This shaft is simply supported by two or more rolling-element bearings at each end of the motor frame and housing. These bearings are the only lubrication points on a motor, and are virtually always grease lubricated. With rare exception, fractional- and small-horsepower motors use sealed bearings and make no provision for external bearing lubrication. If the motor is balanced, aligned, and not overloaded, it should deliver a long life with no additional lubrication. This is not usually the case with larger motors, which are often subjected to heavier and often more variable loads, requiring larger bearings.

Depending on the motor design and manufacturer, external grease fittings usually are installed on motors rated at 5 hp and become much more prevalent on 20-hp units. When motors become more powerful and heavier, they place more load on the bearing points, therefore requiring grease replenishment on a more-frequent basis.

If a motor is to operate at peak efficiency, its bearing cavities (the available space between the balls, raceways, cage, and seals) need only be filled to 30% to 50% capacity, at any time. Because the bearings are hidden behind end plates, they are lubricated “blind” and are often subject to overfilling—especially with manual greasing. When this happens, the grease has nowhere to go except through the bearing cavity into the winding! Grease-filled windings lead to premature failure and a rapid decrease in motor energy efficiency, evident by the rise in motor’s amperage draw.

To alleviate this condition, larger motors are designed with a drain-plug or screw in the end cases that, once opened, will allow excess grease to flow through the bearing and out of the motor end case. If this is kept closed during the greasing process, excess grease will channel directly into the motor windings. If your motor has a grease fitting but no drain plug, use extreme caution not to over-lubricate, as the excess will make its way into the winding.

Over-lubricated bearings will produce excess heat through internal fluid friction that can easily be detected with an infrared camera. This can also be achieved by adding contaminated grease with a dirty grease nozzle or through cross contamination with a non-compatible grease.

Grease-gun inconsistency can be ironed out through use of a single-point auto lube (SPL) setup to deliver a small amount of lube on a continuous basis for as long as a year, depending on the size of bearing and lube reservoir.

SPL manufacturers have setup guidelines based on bearing size and altitude (atmospheric pressure is relational to constant-pressure grease flow) for initial setup, which can then be fine-tuned by monitoring amperage draw and/or bearing temperature. These signatures will be unique to each motor and will differ based on size and load.

Gearbox lubrication

Gearboxes are self-contained mechanical devices that allow power to be transmitted from an input shaft to an output shaft at different speeds through the meshing of different-sized gear sets held on each shaft. The gears and shafts are supported on bearings contained within a sealed “box” that also serves as a reservoir for the lubricating oil. Gearbox dimensions can range from palm-sized to room-sized. With few exceptions, all are oil lubricated.

Depending on the style and size, gearboxes employ a number of methods to move the lubricant over the gears and bearings, the most popular being:

• Splash lubrication. This is a common gearbox-lubrication method in which the reservoir is filled part way with lubricating oil to ensure partial coverage of all the lower mating gears. At speed, these gears use surface tension on their teeth to “pick up” lubricant and transfer to other gears and bearings through meshing and by “flinging and splashing” the lubricant in all directions within the sealed reservoir.

• Pressure lubrication. This method is frequently found on mid- to large-sized gearbox assemblies that use a gear-driven pump, typically located inside the gearbox, to work in conjunction with the “splash” method. Pressure-lubrication systems draw lubricant from the reservoir through a pickup-filter screen and pump oil at pressure through an internal piping system to bearings and gears that would be difficult to service with splash lubrication.

• Mist, or atomized, lubrication. This approach, reserved for the largest of gearboxes, uses a vane-style pump that picks up lubricant from the reservoir and “slings” it at a plate, causing it to atomize into a micro-drop mist. The mist saturates all of the mechanical components within the sealed gearbox.

In all three lubrication methods, choosing the correct oil viscosity and additive package is most important. Typical to all gearboxes is the need to ensure:

No cross-contamination of lubricants occurs during oil top-ups or change-outs. Label your gearbox with the correct oil specification.

No dirt or water contamination is allowed into the gearbox.

The drain, fill, and breather caps are always tightly in place.

The gearbox is regularly wiped clean of dirt and debris that will act as a thermal blanket and unnecessarily heat up the oil.

The gearbox is not over-filled creating churning (foaming) of the oil that can rapidly deplete the anti-foam additive, causing the oil to oxidize. This requires attaching low- and high-level markers to the gearbox sight gage.

If you have all of the above practices in check, make enquiries regarding the use of synthetic gear oils. These not only last longer but can cut your energy consumption as much as 4%. MT

Ken Bannister is co-author, with Heinz Bloch, of the recently released book Practical Lubrication for Industrial Facilities, 3rd Edition (The Fairmont Press, Lilburn, GA). As managing partner and principal consultant for EngTech Industries Inc. (Innerkip, Ontario), he specializes in the implementation of lubrication-effectiveness reviews to ISO 55001 standards, asset-management systems, and training. Contact him directly at kbannister@engtechindustries.com, or telephone 519-469-9173.


learnmore2“A Real-World Approach to Electric Motor Lubrication”

“The Inner Life of Bearings, Parts 1 and 2”

240

8:29 pm
December 20, 2016
Print Friendly

Tune Your Lube-Delivery System

This mechanically actuated grease pump uses a pitman-arm control connected to a large-diameter rotating-machine shaft. The shaft attachment point is offset from the center to produce a reciprocating arm motion that produces a rocking motion at the pump shaft. This emulates the back-and-forth motion of the manual lever arm. Photo: EngTech Industries Inc.

This mechanically actuated grease pump uses a pitman-arm control connected to a large-diameter rotating-machine shaft. The shaft attachment point is offset from the center to produce a reciprocating arm motion that produces a rocking motion at the pump shaft. This emulates the back-and-forth motion of the manual lever arm. Photo: EngTech Industries Inc.

Optimizing a lubricant-delivery system is not difficult and the benefits are significant.

By Ken Bannister, MEch Eng (UK), CMRP, MLE, Contributing Editor

When a piece of rotating machinery is purchased, it almost always is delivered with a designed lubrication system or approach in place. The type of equipment can be as complex as a high-end, integrated, computer-controlled, automatic lubricant-delivery system that supplies each bearing point with a measured amount of lubricant based on time, cycle, or condition.

Or, if a site’s budget was tight during the initial specification and procurement process, its new machinery could arrive with a more modest form of lubrication technology involving inexpensive grease nipples and/or oiling points at each bearing point and the simplest of instructions in the operations and maintenance manual to “lubricate as necessary with a specified lubricant.”

Those examples represent the extremes in lubrication design and approach. Fortunately, from one extreme to the other and in between, maintenance-department personnel have the ability to tune lubrication-system setups to improve/optimize their particular lube-program deliverables. It’s not as daunting a task as it might seem.

Lubricant-delivery systems are typically designed with one or more areas of adjustability to allow tuning. Take advantage of this capability. Depending on the design mechanics of the system, tuning adjustability can be found in three major places: the metering devices, the pump, and the pump-control system.

Metering devices

Adjustable metering devices, such as those found in single-line, positive-displacement, injector (PDI) systems (oil or grease); dual-line injector systems (oil or grease); or pump-to-point box-cam systems (oil only) allow plant personnel to change the amount of lubricant charge that’s delivered to specified lubrication points. These types of systems are less expensive to design, as they require little or no initial design engineering and put the injector-calibration setup responsibility squarely on the user. The downside to this scenario is that it can easily lead to over- or under-lubrication if the user isn’t familiar with the equipment or doesn’t understand how to calculate a bearing’s lubricant requirements. Maintainers and machine operators can also tinker with settings at will if they feel a bearing requires more or less lubricant—a situation that doesn’t merely change the dynamic from adjustability to “tamperability.” It, too, can lead to over- or under-lubrication and, ultimately, premature bearing failure.

Tuning such systems necessitates calculating the hourly bearing requirement and determining the minimum-to-maximum lubricant output shot per cycle for each injector size/type. The accumulated total amount of lubricant is what must be pumped through the delivery system every hour, and the system must be set up accordingly. From this point on, with all injectors calibrated, any further adjustment is to be carried out at the pump.

Protecting these systems from tampering calls for controlled access. This can be accomplished in numerous ways, the simplest of which is “ganging” multiple injectors together, building a key-access lock-box around them, and allowing access only to designated lubrication or reliability personnel.

NOTE: Popular single-line-resistance and progressive-divider metering devices are non-adjustable. They depend on upfront engineering by the system supplier (incorporated in the cost of the system), before delivery to the machine builder or end user. Their setup adjustability is through pump-output calibration. 

Lubrication pumps, controllers

Lubrication pumps, which come in many configurations and sizes, can be powered manually, electrically, or pneumatically. The delivery rate for all of these can be adjusted on the pump itself or through a pump controller.

Manual pumps are mechanically actuated with a lever arm connected to a positive-displacement piston. The output delivery can be adjusted by restricting the length of the piston stroke with an adjustment at the lever cam. Lubricant is manually drawn into a single-acting piston chamber by moving the lever arm in a back-and-forth arc motion. The lubricant is then moved out of the pump through an internal check valve to the distribution lines and on to the metering devices. The pump is returned through opposite action on the lever or by a return spring.

If reciprocating or rotary machine motion is available, the lever arm of the manual pump can be replaced with a power-takeoff pitman-arm linkage attached to the motion device. The photo on the previous page shows a series-progressive distribution system with a mechanical pump attached to a pitman arm that’s connected to a large-diameter rotating-machine shaft. The shaft attachment point is offset from the center to produce a reciprocating (up and down) arm motion that produces a rocking motion at the pump shaft. This emulates the back-and-forth motion of the manual lever arm.

By changing the length relationship of the pitman-arm attachment point and arm, the degree of arc will change and speed up or slow down the number of pump strokes per hour. As evidenced by the surplus grease around the bearing in the photo, the pump setting is incorrect and needs to be recalibrated to reduce the amount of lubricant delivery.

Pneumatically or electrically powered lube pumps are sized according to the system output requirement per hour. For effective lubrication, smaller amounts of lubricant, delivered on a frequent basis, e.g., every 10, 15, or 20 min., are preferable to a large amount that’s delivered hourly. This approach allows the designer to use a smaller, less expensive output pump and control and provide the ability to adjust total delivery through the number of actuations or lubrication cycles per hour. Setup is accomplished through programming (adjusting) the on/off timer that controls power to the pump.

Pump-lubrication cycles can be controlled in other ways, including through counters that calculate the number of machine or production operations, or by a condition signal, such as an amperage-draw meter that indicates an increase in energy draw from the machine-system motor (due to a rise in mechanical friction that’s most often caused by lack of lubrication). This popular control mechanism is used in automotive-assembly plants to measure the amperage of conveyor-drive and take-up motors that activate and deactivate conveyor chain and pin lubricators.

In simple, modestly priced, manual-grease systems, a grease-gun acts as the pump and metering device, while control is regulated by the grease-gun user and the scheduled preventive-maintenance (PM) instruction. Optimization and setup involves a two-step process in which the grease-gun’s displacement must be determined to first ascertain the number of shots required to meet the bearings’ calculated needs and, second, the frequency of application that must be controlled by the PM schedule. The number of grease-gun shots or the PM schedule is used to fine tune any increase or decrease in the lubrication amount or frequency.

Keep in mind

Automated lubricant-delivery systems are much more accurate, consistent, and easier to set up and control than manual systems. As a result, bearings run cooler (due to less friction), require less energy, and have as much as three times the service life of their manually lubricated counterparts. In short, return on investment from the relatively small purchase and implementation cost of an automated system is quickly realized. 

Regardless of its design, a lubrication-delivery system should be evaluated on a bi-annual basis to assess its effectiveness. Those evaluations should include reviews of bearing-failure incidents, grease usage, changes in bearing running temperatures and energy draw, as well as checks for physical signs of over-lubrication and system neglect. As with the initial setup of these systems, a little adjustment later on—make that a little fact-based, correct adjustment—can pay enormous dividends. MT

Ken Bannister is co-author, with Heinz Bloch, of  Practical Lubrication for Industrial Facilities, 3rd Edition” (The Fairmont Press, Lilburn, GA). As managing partner and principal consultant for EngTech Industries, Innerkip, Ontario, he specializes in the implementation of lubrication-effectiveness reviews to ISO 55001 standards, asset-management systems, and training. Contact him at kbannister@engtechindustries.com, or telephone 519-469-9173.


learnmore2“Anatomy of a CLS: Maintaining Automated Systems”

“Several Hands Responsible for This Oil Debacle”

“Automated Lubrication System Improves Container-Crane Efficiency”

394

3:30 pm
November 15, 2016
Print Friendly

Control and Avoid Lubricant Contamination

Conveyor belt detail on mining site

Clean lubricants increase the life and performance of bearings and ensure the success of your operations.

By Ken Bannister, MEch Eng (UK), CMRP, MLE, Contributing Editor

I am astounded by the number of companies that continue to believe bearing failure and its associated replacement and downtime costs are an acceptable part of doing business. In my experience, this point of view is most apparent at sites with severe and semi-severe operating conditions, wherein water, heat, and fine particulate matter (dust, dirt, and manufacturing debris) are present.

If a machine has any form of replaceable/washable filter, screen, or breather as part of its fluid-management systems—lubrication, hydraulic, and pneumatic-air systems—we can assume the OEM (original-equipment manufacturer) machine designer/engineer expected the equipment and its operators/maintainers to contend with and manage fluid- and air-borne contaminants. These built-in sacrificial filtration elements are specifically designed to provide an inexpensive method of managing and controlling potential contamination issues—externally and internally—to protect delicate, close-tolerance, machine-bearing surfaces at work under a range of operating conditions.

In the majority of operating conditions, effective levels of contamination control and avoidance are achievable with minimum effort when the requirements and basic relationships of and between a machine, its operator(s), and maintainer(s) are understood.

The fact that a piece of equipment begins to run a process or make a product indicates the OEM has done its part: supplied a machine that’s adaptable enough to work in an array of different operating environments or, if the end user is fortunate, one designed and built specifically for a unique operating environment. This means the machinery is fitted with a number of built-in contamination-control/filtration devices that are ultimately designed to fail in their own right. (They also require monitoring for condition and cleaning and/or replacement when their filter media is close to being exhausted.) These devices offer secondary protection through their ability to trap and control the ingress of contaminants into lubricating oil(s), grease(s), and air-flow systems.

Contamination control

When two precision-bearing surfaces interact, they rely implicitly on a lubrication film devoid of particle or water presence to separate—and protect—themselves from each other. The filter is designed to trap and extract any particles or moisture before these contaminants can enter the lubricated zone(s) and cause surface damage.

Almost exclusively in contamination control, filters incorporate a passive surface-attractant medium, designed to work in the direct-flow path of the lubricant and capture any dirt particles (contaminants) held in colloidal suspension as the lubricant, or lubricated air, flows through or across it. Depending on the working conditions, particle size, and fluid-flow rate, the porous filter media can be constructed of a variety of materials, including simple wire-mesh gauze, wire wool, pleated paper, cellulose, porous metal, fiberglass, diatomaceous earth, or felt. Due to higher fluid viscosity and line-delivery pressures, grease systems use heavy-gauge coiled wedge-wire or wire-mesh filters to attract large solid contaminants that may be introduced from a dirty grease-gun nozzle.

Enclosed, sealed gearboxes and reservoirs require breather devices to equalize pressure and control solid and moisture contamination. Old-style breathers constructed of wire wool can only prevent large solid contamination (40+ microns in size), and are now regularly replaced with newer-style breathers that employ desiccant-like silica gel hydrophilic media.

This media type allows the reservoir to breathe and prevent airborne particulates (3+ microns) from entering the reservoir. It also wicks and captures moisture from inside the reservoir, while preventing outside moisture from entering the reservoir or gearbox chamber.

Heavy water contamination usually enters a system as a result of maintenance or production personnel using oil that has been incorrectly stored in the outside elements, or through production-process-water spillage or high-pressure machine-cleaning (prevalent in food-manufacturing machinery).

Contamination avoidance

Ironically, while contamination avoidance is the primary strategy for reducing and eliminating premature bearing failure, it is absent/avoided in many lubrication programs. A good contamination-avoidance program requires little-to-no capital outlay, fits perfectly into any preventive-/predictive-maintenance (PM/PdM) program, involves cooperation of operators and maintenance personnel, and will drastically reduce the reliance and maintenance requirement of what essentially become secondary contamination-control systems.

In simple terms, contamination-avoidance means taking actions to ensure that contaminants don’t come into contact with a machine and its bearing-protection systems. Success relies, largely, on a good relationship between operations and maintenance personnel and a healthy respect for the machine and components in question. The following points outline the foundational requirements of any contamination-avoidance program:

Good housekeeping. Ensuring that dirt does not accumulate on equipment surfaces is preventive maintenance 101 and the responsibility of operator and maintainer. Implementing a simple 5S program will facilitate this element. This applies to the machinery and the lubricant-storage area and transfer equipment.

Lubrication training. Understanding the effect and consequence of failing to arrest contamination is mandatory. Use processes and procedures that ensure consistent effort.

Lubricant storage and transfer engineering. Using dedicated, color-coded, and closeable storage and transfer equipment protects lubricants from the elements and cross-contamination exposure. Make sure all grease guns and nipples are cleaned with lint-free rags before and after use.

Condition-based oil changes. Performing oil/filter changes too frequently risks exposure to contaminants. Performing them too infrequently risks exhausting filtration media and, in turn, lubricating-fluids degradation. Condition-checking allows operators and maintainers to become more familiar (or in tune) with a machine.

Lubricant cleanliness. Testing new lubricants and bulk fluids to verify their cleanliness and additive-package formulations before they’re put into use is a must. This is the only way to ensure that they’ve been delivered in a clean state and meet referenced specifications. In addition to the above behavioral changes, the following equipment and workspace changes can be put in place if the production process and workplace environment warrants:

Room-ventilation system. Positive or negative room pressurization or exhaust-air ventilation can be used to reduce or eliminate airborne contaminants.

Machine design. If the production process involves water or sand, mechanical deflector shields can be used to protect, divert, and channel contaminants away from bearing and lubricant-reservoir areas. Fill-cap and drain-port plugs can be replaced with positive-lock fill/drain connections that hook to closed-system transfer carts. Conventional breathers can be replaced with a closed-loop expansion tank on larger reservoir systems.

Taking small contamination-avoidance steps will significantly reduce your site’s lubricant-contamination-control requirements. The savings from these efforts can then help fund your world-class lubrication-management program. MT

Ken Bannister is co-author, with Heinz Bloch, of the soon-to-be-released Practical Lubrication for Industrial Facilities, 3rd Edition (The Fairmont Press, Lilburn, GA). As managing partner and principal consultant for EngTech Industries (Innerkip, Ontario), he specializes in the implementation of lubrication-effectiveness reviews to ISO 55001 standards, asset-management systems, and training. Contact him directly at kbannister@engtechindustries.com, or telephone 519-469-9173.


learnmore2“Store and Handle Lubricants Properly”

“How Clean is the New Oil in Your Equipment?,”

“The Inner Life of Bearings, Part I: How Lubrication Really Works”

Navigation