Archive | Infrared

94

8:54 pm
June 15, 2017
Print Friendly

Realize Payback From Motor Insulation Tests

Insulation problems are to blame for a high percentage of motor failures and associated unplanned costs.

Electric motors isolated on black

According to SKF (skf.com, Gothenburg, Sweden, and Lansdale, PA), 40% of failures in electric motors are caused by bearing problems. Another 40%, however (a percentage that’s even higher in motors operating above 4 kV), are caused by insulation problems associated with coil windings or loose connections. Unfortunately, predictive-maintenance techniques to detect insulation weakness typically aren’t employed as much as those used to keep tabs on bearing health, i.e., vibration analysis and infrared thermography. (Ground-wall-insulation “megger” testing is common in plants, but, as SKF explained, it’s not a complete test.)

The problems caused by insulation weakness, including catastrophic motor failures and, in some cases, fires, can be just as serious as those caused by worn bearings or overheating. For this reason, it is important for personnel to have a way of assessing insulation integrity and be able to take timely action.

There are two types of insulation in an electric motor. Groundwall insulation is found between the motor stator and the electrical windings. The insulation strength of new groundwall insulation is very high, often 40 times operating voltage. Winding insulation is the thin insulation on the wires used in the motor windings. The insulation strength of new winding insulation is about 15 times operating voltage.

Most motor insulation failures start as winding insulation failures since that insulation strength is vastly weaker. When a winding insulation failure occurs, the motor can fail quickly, often becoming so hot as to also damage the groundwall insulation, causing it to fail.

Automatic testing

Automated motor-insulation testing, using a device such as the SKF Baker AWA-IV, has been shown to make insulation testing easy and remove operator error and inconsistency.

Static insulation testing is done with the motor disconnected from the power supply, and typically performed from the motor control cabinet (MCC). Testing from the MCC also allows detection of electrical faults outside the motor itself, such as in junction boxes or feeder cables. Motors also can be electrically tested in situ through dynamic monitoring, which can reveal problems in the wider power-machine-load system. Typical insulation testing includes:

• Coil resistance tests
• Meg-ohm test
• Polarization Index (PI) test
• DC step-voltage test
• Hipot test
• Surge test.

While the first five tests assess the health of a motor’s groundwall insulation, it’s important to keep in mind that a unit’s winding insulation is more prone to failure. The last procedure on the list, the surge test, focuses on winding insulation.

All of the six listed insulation tests produce clear, unambiguous results that require little interpretation. Those results can also be trended over time. This allows operators or maintenance managers to assess the progress of a potential condition over time. For instance, increasing non-linearity in step voltage could suggest weakening of the groundwall insulation.

Real-world payback

Motor-insulation testing can have an enormous impact on a plant’s bottom line. Consider these real-world examples:

Case #1 (static testing): Technicians with a leading pulp and paper company began using SKF Baker AWA-IV testers to identify problems in about 800 motor systems. Among the many problems this testing found—and solved—were:

• blown holes in insulating boots that covered cable lugs in junction boxes (identified through step-voltage testing)
• a bad lug connection in a motor junction box (found after a failed resistance test)
• a stator coil turn-to-turn short on a booster fan (identified by surge testing)
• a cable shorted to ground in starter, and a pinhole in the cable (found after failed surge and step-voltage tests).

In all, the company reportedly was able to reduce its annual motor costs by nearly a third through the use of the insulation testing rigs.

Case #2 (static testing): A steel mill in Australia had a 6.6-kV pump motor that required maintenance–including a rewind. The motor was rewound at a motor shop, then transported 500 mi. (aprox. 800 km) to a second facility for vacuum-pressure impregnation (VPI). A subsequent surge test, however, indicated that insulation strength was still not right. The motor was then put onto a test stand and run. Motor currents and vibration tests were acceptable so, since the mill was in a hurry to resume production, the motor was put back into service. Three days later, the unit failed catastrophically and ignited a fire. The cause was traced to the windings, which had probably been damaged when the motor was transported to or from the VPI facility. The surge test picked up on the problem, but had been discounted.

This failure showed that tests for insulation strength are real, and to be ignored at a motor user’s peril. If vibration monitoring indicates that a bearing is starting to fail, it is replaced. The same should happen with insulation.

Case #3 (dynamic testing): U.S. utility company Pacific Gas & Electric was facing a potential $23,000 bill to replace a motor on a 125-hp screen-refuse pump, which was overheating and drawing excessive current. Rather than simply replace the motor, the company looked into the reason for the high current, as there were no signs of bearing problems, current imbalance, excessive harmonics, or rotor-bar problems.

Dynamic testing with SKF Baker Exp3000 technology revealed that the load was running higher than the motor’s rated value. Looking back through the maintenance history, the personnel found that a 15.75-in. impeller on the pump had been replaced with a 17-in. impeller. Once the correct-sized impeller was installed, the current returned to normal values.

This testing helped prevent a costly mistake, given the fact that the oversized pump impeller would also have overloaded a new replacement motor.

Case #4 (dynamic testing): On-line testing also prevented a huge loss at a Progress Energy power plant in the United States. Technicians were investigating why one of three submerged circulating water pumps was requesting less input power and, as a result, running faster. An SKF Exp3000 captured the torque signature of all three motors, giving a snapshot of the load demands of each unit. The pump in question had a torque of about 75% of a healthy pump. The torque band was also too wide, and varied dramatically. A diver sent to examine the underwater pump discovered that its end bell had fallen off.

The unit was quickly repaired, which helped to maintain output when one of the other pumps failed soon afterward. The company estimated that it would have lost $3.5 million in revenue if output levels had fallen.

These examples (and many others) show that a simple, inexpensive insulation-testing regime can generate significant benefits for an operation. One example also demonstrates that ignoring insulation-testing results can cost an operation dearly. MT

For more information visit skf.com.

149

8:30 pm
June 15, 2017
Print Friendly

AZ Puts Proactive in Reliability

Biopharmaceutical manufacturing company AstraZeneca redefines reliability to streamline more-effective maintenance processes.

1706fprofile05p.jpeg

By Michelle Segrest, Contributing Editor

Even though the AstraZeneca manufacturing facility in Mt. Vernon, IN, looks like a hospital surgical unit—with key equipment separated into concentrated clean rooms—for years it operated like an emergency room. When an equipment breakdown occurred, personnel jumped into action, triaging the issue and not always looking into the true symptoms to prevent future occurrences.

At AstraZeneca, separating the reliability people from the day-to-day commotion, defining the difference between reliability and maintenance, and management support were keys to a successful transition to a reliability-oriented operation. Photo: AstraZeneca

At AstraZeneca, separating the reliability people from the day-to-day commotion, defining the difference between reliability and maintenance, and management support were keys to a successful transition to a reliability-oriented operation. Photo: AstraZeneca

The company acquired the Mt. Vernon facility in August 2015. With a new reliability unit in place and an Operations Excellence Team, the site now has teams focused on preventing emergencies, instead of addressing them.

Reliability and maintenance can be a challenge when maintaining a high standard for the pharmaceutical environment. As you walk through the facility, the white walls and floors glisten against the shiny, almost mirror-like, stainless-steel equipment. Equipment and personnel rooms serve as airlocks between the corridors and the manufacturing rooms. The airlocks are guards against dust, dander, allergens, or other elements that could contaminate the critical medicine that is being manufactured. The switch from a reactive to a proactive, risk-based, approach has taken reliability in the 700,000-sq.-ft. manufacturing area to a new level.

“Our first step was to separate our reliability team from the day-to-day commotion,” explained facilities engineer Andrew Carpenter. “We had to be sure they understood that reliability is different than maintenance, and we had to all take this seriously. We had many people who were specialists and were relied upon for troubleshooting and fixing emergency issues. It was a complete mindset change.”

The new reliability team received support from upper management and buy-in from the team. Although some roles changed, the team remained headcount neutral. This, along with clear alignment of goals, became the keys to a successful transition.

“If you are starting a reliability program in your plant, call it what it is,” senior building and reliability manager Chris Nolan said. “Reliability is different than maintenance. The goal is to get to a certain utopia. As your group grows, you all become more focused on that reliability side, but when you are starting out with a reactive-maintenance program, and you want to transition to one that is reliability based, there is a different vision. This must be explained and understood.  Now we have processes in place to aid in the prevention of emergencies and more organized efforts to quickly respond should the need arise.”

With an investment in new tools and technology, including additional vibration, infrared thermography, and ultrasound training, the newly structured, two-year-old team measures its return on investment in high-quality performance and products.

“A key driver within our business is quality,” Nolan said.

AstraZeneca is a science-led, biopharmaceutical business that discovers, develops, manufactures, and supplies innovative medicines for millions worldwide—primarily in the areas of respiratory, cardiovascular and metabolic, and oncology. The Mt. Vernon site manufactures oral-solids medicines—primarily for Type 2 diabetes treatment.

The maintenance and reliability group focuses on maintaining the utilities, purified water, HVAC, manufacturing equipment, and all Good Manufacturing Practice (GMP) maintenance.

Maintenance technician Dan Guth concentrates on a detailed work request in the maintenance shop.

Maintenance technician Dan Guth concentrates on a detailed work request in the maintenance shop.

A new process

The Mt. Vernon-site reliability team adopted a common mission statement from the industry. “Anyone who improves a process or a piece of equipment is a reliability leader.”

The simple vision was broken down into specific goals and targets. Nolan explained that 2015 was all about building a foundation, while 2016 was the year to focus on root-cause analysis. The team received early help from consultant group Life Cycle Engineering (LCE, Charleston, SC, LCE.com).

“In pharma, when somebody uses the word ‘criticality’ they go straight to quality,” Nolan said. “LCE helped us identify the tools we needed to show overall criticality—business cost, quality, mean time between failure. Andrew [Carpenter] led us through a criticality assessment at our site and we banked that into different categories, including equipment, water purification, parts redundancy, and packaging items. Now we do an assessment and re-rank our critical categories that need attention every year. We are in the process of doing that now. This helps us focus our efforts and has become a game-changer for us.”

The reliability group became its own entity within the plant’s maintenance organization.

“We were doing a really good job of fixing issues, but needed to work on following up after the issue, getting to the root cause, and putting processes in place to prevent the issue from happening again,” Carpenter said.

Two years in, Carpenter and Nolan are beginning to see the fruits of the team’s labor. “We can see that it is working and we have come a long way.”

Maintaining the reverse-osmosis purified- water-generation system at the AstraZeneca plant is critical to ongoing production.

Maintaining the reverse-osmosis purified- water-generation system at the AstraZeneca plant is critical to ongoing production.

Early wins

Redefining the maintenance and reliability functions was an anchor in achieving some early wins for the new team.

“We are all here to get the product out of the door, but the difference is simply the things we focus on,” Nolan said. “Maintenance right now focuses on the day-to-day activities—the preventive maintenance piece and execution of that at a high level. But when you are executing you are challenged on the day-to-day things, so it is hard to find that balance of time to take a look back on the long-term items, like the vision. For us, the difference between maintenance and reliability is that reliability is getting into the data mining of the maintenance activities. Particularly in the pharma environment, that is a big piece that ties back to the quality culture, as well. The maintenance piece is very tactical, while reliability centers around more planning and vision.”

Carpenter said the team’s vision began to take shape when it zoomed in on the root-cause analysis program. About six months into the program’s launch, Nolan began to notice a distinct change in the culture.

“It was a Friday afternoon before a three-day holiday weekend and normally everybody was ready to scoot,” he said. “We had one of our metrology calibration technicians and engineering technicians having a serious conversation about a particular problem. It turned into an hour-and-a-half discussion of digging into really finding the problem, turning it into a root-cause analysis. That is the first time when I really thought this whole program began to click. These guys were looking beyond the fix and they were passionate about preventing it from happening again.”

Andrew Carpenter, Neil Reichel, Chris Nolan, and author Michelle Segrest (l-r), discuss reliability and maintenance operations in the AstraZeneca maintenance shop.

Andrew Carpenter, Neil Reichel, Chris Nolan, and author Michelle Segrest (l-r), discuss reliability and maintenance operations in the AstraZeneca maintenance shop.

Carpenter explained that the change involved a clear switch from simply fixing a problem to a focus on the big picture. “We are better at documenting the data and finding ways to prevent failures,” he said.

One of the areas the team focused on heavily at the start of the reliability program was predictive maintenance. Engineering technicians and predictive-maintenance technicians were sent to Level I vibration, infrared, ultrasound, and laser-alignment training. It didn’t take long to see the return on investment.

Nolan said another key win was bringing the storeroom into the reliability discussion.

“The storeroom is a key to reliability,” Nolan said. “Paying attention to what is going on in the storeroom tells you what is going on in the plant. What goes out of your storeroom is a huge check and balance of your maintenance process.”

Realizing how much can be learned from problems and mistakes also made a big difference.

“Problems are gold,” Nolan said. “Problems within your processes give you ‘aha’ moments. This allows you to bring people together to look at what is going on and talk about how can it be better. Don’t ever be afraid to share a problem because usually it can positively impact you, your group, or someone else.” MT

Michelle Segrest is president of Navigate Content Inc., and has been a professional journalist for 28 years. She specializes in the industrial processing industries and has toured manufacturing facilities in 41 cities in six countries on three continents. If your facility has an interesting maintenance and/or reliability story to tell, please contact her at michelle@navigatecontent.com.

270

6:39 pm
May 15, 2017
Print Friendly

Understand Motor/System Baselines

Want to get the most from your electric motors? Think of St. Louis-based EASA (Electrical Apparatus Service Association,  easa.com) as a treasure trove of practical information and its members as a “go to” source for help with specific applications. Consider this insight on motor/system baselines.

— Jane Alexander, Managing Editor

According to EASA’s technical experts, changes in motor/system vibration readings provide the best early warning of developing problems in a motor or system component. Other parameters to monitor may include operating temperature of critical components, mechanical tolerances, and overall system performance, including outputs such as flow rate, tonnage, and volume.

Motor-specific baselines incorporate records of electrical, mechanical, and vibration tests performed when units are placed in operation or before they’re put in storage. Ideally, baselines would be obtained for all new, repaired, and in situ motors, but this may not be practical for some applications. These baselines typically include some or all of the following:

randmLoad current, speed, and terminal voltage

Changes in these parameters usually indicate that a vital system component is damaged or about to fail. Other electrical tests may include insulation resistance, lead-to-lead resistance at a known temperature, no-load current, no-load voltage, and starting characteristics.

QUICK TIP: Some changes in the current and speed may be normal, depending on the type of load.

Motor current signature analysis (MCSA)

This test diagnoses squirrel cage rotor problems, e.g., broken bars or an uneven air gap. It’s more accurate if a baseline is established early in the motor’s life.

Mechanical tests

These normally consist of measuring shaft runout (TIR) and checking for a soft foot.

Vibration

Although overall vibration readings can be used as baseline data, Fast Fourier Transform (FFT) spectra in all three planes at each bearing housing are preferred (see “Vibration Analysis” on page 22). Shaft proximity probes can be used to determine sleeve bearing motor baselines.

Infrared thermography

This tool can detect changes in the operating temperature of critical motor components, especially bearings.

New-motor baselines

Comparing factory terminal winding resistance and no-load amps with data taken under load can be useful when monitoring the condition of a new motor or troubleshooting system problems. Factory baselines are often available from the manufacturer or its website. The accuracy of factory data depends on how it was obtained, but it’s usually sufficient for field use.

Baseline data for a newly installed motor could reveal an error, e.g., misconnection for an incorrect voltage, and prevent a premature motor failure. Rather than simply “bumping” a motor for rotation before coupling it to the load, operate it long enough to measure the line current for all three phases, as well as the voltage and vibration levels.

QUICK TIP: Comparing the baselines of a failed motor and its replacement could reveal application- or process-related weaknesses in the system.

Repaired motor baselines

Service centers usually provide no-load and/or full-load (when stipulated) test data for repaired motors, including voltage, current, and vibration spectra. Comparing these results with historical baselines and those obtained on site when the motor is returned to service may confirm the quality of the repair or possibly reveal underlying system problems. For example, increased vibration levels in on-site tests might indicate a deteriorating motor base or a problem with the driven equipment rather than a balancing issue with the motor.

With newly repaired motors that have been in operation for many years, baseline comparisons are invaluable in root-cause failure analysis and may even expose consequential damage from certain kinds of failures, e.g., a broken shaft. To correctly identify cause and effect and prevent recurrences, always investigate equipment failure at the system level. MT

For details on using motor/system baselines, as well as expert advice on a wide range of other motor-related issues, download Getting the Most from Your Electric Motors, or contact a local EASA service center.

259

6:01 pm
May 15, 2017
Print Friendly

Use IR Switchgear Windows Properly

IR windows provide a measure of safety and reduce labor by allowing thermographers to inspect switchgear without opening panel covers. (Photo courtesy of Fluke Corp.)

IR windows provide a measure of safety and reduce labor by allowing thermographers to inspect switchgear without opening panel covers. (Photo courtesy of Fluke Corp.)

By Jim Seffrin, Director, Infraspection Institute

In an effort to reduce the risk of injuries associated with arc flash, many sites have installed infrared (IR) transmissive windows or ports that permit IR inspections of switchgear without the need to open panel covers. Although such devices can provide a measure of safety and help to reduce labor associated with those inspections, they pose unique challenges not associated with direct line-of-sight imaging.

Switchgear windows are typically constructed of a rigid frame with a fixed IR transparent material that enables an imager to view through them. Switchgear ports consist of a rigid frame with small openings through which an imager may be sighted. Depending upon type, some feature a single hole, others incorporate metal screens containing multiple holes.

randmIR windows will always attenuate infrared energy received by the imager. While this attenuation affects qualitative and quantitative data, the greatest challenge involves temperature measurement. Accurate temperature measurements can’t be obtained through a screened port. Furthermore, the ability to accurately measure temperatures through an IR window is possible only if the following conditions are met.

• The window opening must be larger than the imager’s lens objective.
• The target must be at or beyond the imager’s minimum focus distance.
• Values for window transmittance and target emittance must be known and properly entered into the imager’s computer.
• The imager’s lens must be kept perpendicular to and in contact with the window.

When it is not possible to meet all of the above conditions, imagery should be evaluated only for its qualitative value. As always, any inexplicable hot or cold exceptions should be investigated for cause and appropriate corrective action taken. MT

Words to the Wise: Beware Hidden Electrical Danger

Getting ready for an infrared inspection of electrical equipment often requires manual preparation of switchgear components, which could be a riskier endeavor than many people might think. Unwary thermographers and other personnel can, in fact, be injured through contact with cabinets or component surfaces that have become accidentally or unintentionally energized.

Switchgear enclosures and components are generally designed to prevent their surfaces from becoming energized. Under certain circumstances, however, enclosures and other dielectric surfaces can become unintentionally energized to significant voltage levels. This potentially lethal condition can be caused by improper wiring, faulty equipment, or contamination due to dirt or moisture.

When conducting infrared inspections on or near electrical equipment, always keep the following in mind:

• Only qualified persons should be allowed near energized equipment.
• Treat all devices and enclosures as though they are energized.
• Never touch enclosures or devices without proper PPE (personal protective equipment).
• Do not lean on or use electrical enclosures as work surfaces.
• Always follow appropriate safety rules.
• Know what to do in case of an accident.

Working alone near exposed, energized electrical equipment isn’t just dangerous, it’s a violation of federal law. Thermographers who perform infrared inspections on any electrical equipment should never work alone. Since CPR can’t be self-administered, at least two people trained in first aid and CPR must always be present when working near most exposed, energized equipment. Having a second CPR-trained person along not only satisfies OSHA requirements, it may save your life.

To paraphrase a time-honored electrician’s admonishment, remember that while there are old thermographers and bold thermographers, there are no old, bold ones.

Jim Seffrin, a practicing thermographer with more than 30 years of experience in the field, was appointed to the position of Director of Infraspection Institute (Burlington, NJ), in 2000. This article is based on several of his “Tip of the Week” posts on IRINFO.org. For more information on electrical systems, safety, and other infrared-related issues, as well as various upcoming training and certification opportunities, email jim@infraspection.com or visit infraspection.com.

351

4:15 pm
April 13, 2017
Print Friendly

Reliability Changes Lives

Using skilled technicians and advanced technology, Eli Lilly and Company creates life-saving medicines and devices worldwide.

By Michelle Segrest, Contributing Editor

Throughout the halls of the Indianapolis Eli Lilly and Company facility, the corporation's brand is proudly displayed. All photos courtesy of Eli Lilly and Company.

Throughout the halls of the Indianapolis Eli Lilly and Company facility, the corporation’s brand is proudly displayed. All photos courtesy of Eli Lilly and Company.

At Eli Lilly, the motivation to improve production reliability is not just something that is tracked on graphs and charts for upper management to review. In fact, for maintenance and reliability engineer Carrie Krodel, it’s personal.

Krodel, who is responsible for maintenance strategies at the Eli Lilly Indianapolis facility’s division that handles Parenteral Device Assembly and Packaging (PDAP), has a family member who uses the company’s insulin. “I come to work every day to save his life,” she said. “Each and every one of us plays a part with reliability. Whether it’s the mechanics or the operators keeping the line running, the material movers supplying the lines with the products, or the people making the crucial quality checks, everyone is a part of it. And we all know that the work we are doing is changing lives.”

The Indianapolis site covers millions of square feet with nearly 600,000 assets that must be maintained. According to Rendela Wenzel, Eli Lilly’s global plant engineering, maintenance, and reliability champion, the company produces the medicine as well as the packaging for insulin pens, cancer treatments, and many other products and devices.

For the entire Eli Lilly team—which includes a group of about 80 engineers at the Indianapolis site—the responsibility is crucial. “If we mess up, someone gets hurt,” Wenzel said. “This is a big responsibility.”

However, it’s the human element of this responsibility that inspires an exceptional level of quality.

Team, tools, training

Screen Shot 2017-04-13 at 11.03.07 AMWayne Overbey, P.E., is the manager of the Maintenance-Manufacturing Engineering Services department. He said his team of seven maintenance technicians uses three primary technologies every day to keep the machines running—vibration analysis, oil analysis, and infrared technology. With a focus on condition-based monitoring, each team member has an area of responsibility to collect and analyze vibration data. In addition to the vibration data collector, each team member carries a small infrared camera to make heat-signature images used to diagnose and troubleshoot rotating-equipment problems.

The team also uses a digital microscope that can zoom to 3500X magnification. This helps them look closely at a bearing race, cage, and rolling elements and see what caused a failure, whether structural, corrosion-based, or failed lubrication. In addition, the group has an oil laboratory that can analyze oil and grease. 

The team performs more than 7,000 measurements on more than 4,000 rotating/reciprocating machines and performs vibration analysis on those machines monthly, Wenzel stated. The level of qualified individuals is high. “Anything that is process related, we have the equipment to look at it and analyze it,” she said. “We have people with ISO 18436-2 Cat 2 and Cat 3 verifications and even one expert with an ISO18436-2 Cat 4 certification, and there are fewer than 100 people globally with that level of certification. These guys are experienced, high-level certified professionals.”

The maintenance team increased its level of performance more than five years ago when it made the strategic decision to outsource the facilities (buildings and grounds) portion of maintenance. With about 220 maintenance professionals companywide at the Indianapolis facility, this allowed the team to focus more on production and analysis rather than the facilities, Overbey said.

The team has sophisticated data-collection routes set up as PMs and also focuses heavily on maintenance training.

“We have a difficult time finding people interested in maintenance,” Overbey said. “We have a strategic program to train people that takes 18 months to 2 years. When I was growing up, being an electrician or mechanic was a fine career, but now the attitude is that you have to have a college degree to be successful. Most of our crafts people here make more than the average liberal-arts major. As we cycle out the baby boomer work force, we need to find new talent and close the gap.”

Wenzel agreed that finding qualified crafts people has been a focus that has helped Eli Lilly in its drive for reliability.

“Wayne saw the need and developed an excellent program,” she said. “Management is supportive. He is training them and then sending them to get experience while they are going to school.”

The program is responsible for hiring 24 trainees, to date, and has been able to place 18 of them in full-time positions within Lilly maintenance groups. The remaining six trainees are still in the initial stage of the program. The training also uses basic maintenance programs provided by Motion Industries and Armstrong. Last year, there were more than 30 well-attended training classes focused on equipment used at Lilly. The company wants the training to be relevant to what the maintenance technicians perform on a daily basis.

“The whole condition-based platform makes us unique,” Wenzel said. “We have all the failure-analysis competencies. It’s a one-stop shop. We provide two-to-three day courses on condition-based technologies for crafts and engineers. The whole understanding, as far as what maintenance and reliability can do, is to increase wrench time and uptime. We are all seeing an uptake in technology.”

The Indianapolis Eli Lilly facility has more than 600,000 assets that must be maintained by its experienced engineering-services team.

The Indianapolis Eli Lilly facility has more than 600,000 assets that must be maintained by its experienced engineering-services team.

Best practices

Overbey stated that his main responsibility is to help the various site-maintenance groups improve uptime by using diagnostic tools to identify root causes of lingering problems. With a focus on training paying dividends, he said the high-quality people are what make the condition-based monitoring team successful.

The team works with the site-maintenance groups to reduce unexpected failures, so increased time can be focused on preventive maintenance. “We look at our asset-replacement value as a function of our total maintenance scheme,” Wenzel said. “We look at recapitalization and make sure we are reinvesting in our facility. We keep track of where we are with proactive maintenance. Those numbers are tracked facility to facility and then rolled into a global metric.”

Vibration analysis and using infrared technology has become a central part of the department’s reliability efforts.

“These guys have taken responsibility for the failure-analysis lab and taken it on as an added-value service,” Wenzel said. “For example, if there is a failed bearing, they take it out, cut it up, and provide a report that goes back to management. If we make a call that a piece of equipment has increased vibration levels and is on the path to failure, based on the vibration data collected, getting those bearings goes a long way in getting site buy-in when the actual bearing problem can be visually observed. Most individuals are skeptical when shown the vibration waveform (squiggly lines), seeing the bearing with the anomaly is the true test of obtaining their buy in.”

“We can compete with anyone in terms of oil analysis,” Wenzel added. “We can identify particles and have switched to synthetics. For example, when oil gets dirty, it becomes acidic. Something slightly acidic can be more harmful than something that is highly acidic because it will just continue to eat away at the material and cause significant damage before you can stop it. Something slightly acidic can really tear up bearings. The FluidScan 1100 can detect that.”

Screen Shot 2017-04-13 at 11.03.19 AM

More than 80% of the oil samples are now handled internally, Wenzel said. “As we are selling all of these capabilities to the PdM team around the world, we are starting to look at some of the potential issues at other facilities to provide extra analysis with this condition-based maintenance group,” she said. “We are sharing good ideas and processes across facilities. We now have a maintenance and reliability community.”

Eli Lilly employs Good Manufacturing Practices (GMP) and the use of many chemicals requires a high level of cleanliness that is checked daily and regulated by government bodies.

Changeovers can often take weeks. “We check everything,” Wenzel said. “There is very involved and stringent criteria for how we clean a building. Regulations are a challenge, but they keep you on your toes. You don’t even notice it anymore because it becomes a part of what you do. It doesn’t faze the day-to-day thinking.”

The precision and accuracy of the facility's manufacturing equipment contributes to its product excellence.

The precision and accuracy of the facility’s manufacturing equipment contributes to its product excellence.

Operational excellence

Eli Lilly works with cross-functional teams in which maintenance, engineering, and operations are working on the overall process. Operations manager Jason Miller is responsible for running the process. Maintenance corrects the issues and performs preventive maintenance to get ahead of equipment failures and prevent unplanned downtime.

“Anytime we have an equipment failure we evaluate what happened and see what process we can put in place to get ahead of those things,” Miller said. “Line mechanics are on each shift and work with our line operators to understand and troubleshoot issues. We get ahead of issues to ensure [there is] no impact to the quality of our process.

With advanced robotics and a large amount of automation, monitoring performance and quality is key to successful operation and production, Miller stated. “Everything is captured, including downtime and rejects,” he explained. “We identify corrective actions at every morning meeting. We use the data on the line to drive improvement. The line is automated, but if there is a reject every 100 cycles, we need to take action. The robotics never stop. If you see overloads or rejects over time, this tells you about mechanical wear and other issues with the equipment. We drive data-driven decisions for maintenance.”

The preventive maintenance includes lubricating linear slides each month. When vibration is detected, adjustments are made immediately. “The machines tell us what’s going on. We just have to know how to read them,” Miller said. “We have manual and visual quality checks, but the machines also do quality checks. Reliability is critical because when patients are waiting on their medicine, the machines have to run the way they are supposed to run all the time. We have standards, and they have to be precise. This is medicine going into someone’s body. We are the last step of the process. It has to be packaged and labeled correctly, as well.”

Mike Campbell is the maintenance planner and scheduler for PDAP and has developed a system in which all preventive maintenance is performed during scheduled shutdowns.

“We develop a schedule with every piece of equipment and every scheduled PM associated with it,” Campbell said. “One line may have 50 to 60 PM work orders to perform during the week of the scheduled line shutdown. We bring in a lot of resources to do it all at once, typically requiring a day shift and a night shift.”

Advanced production technology is critical to the standard of reliability excellence.

Advanced production technology is critical to the standard of reliability excellence.

Changing lives with reliability

Wenzel said that looking at how each department interacts helps to put all the pieces of the reliability puzzle together. They have even received outside recognition of their practices in Indianapolis. In 2008, The Corporate Lubrication Technical Committee, of which Wenzel is the chair, won the ICML John Battle Award for machinery lubrication.

“It’s not only a cost piece, there is a whole asset-management piece and a whole people piece that we have to look at–not just the numbers, the metrics, the bars and charts–it’s the whole thing that makes a facility tick,” she explained. “Reliability isn’t just my job…it is everyone’s job. Every time I get into my car and turn the key, I expect it to come on. Every time I run that piece of equipment, I want it to perform the same way every time. That, to me, is reliability.”

Overbey said reliability is about being tried and true. “It’s predictable. It’s reliable every day. It’s the whole conglomeration of things that is very complicated, yet very simple. When all is said and done, reliability is a huge advantage for a company. You are only spending money when you need to. But it’s very difficult to get there.”

Wenzel said that consistency is a key to reaching reliability goals. Eli Lilly has global quality standards and good manufacturing practices that are applicable to each of the company’s sites across the world.

“Reliability means the equipment is ready each and every time it runs, and it should perform the same way each time,” Krodel said.

Doug Elam is Level 4 vibration certified, which is a rare level of qualification. He works on Overbey’s team and also tried to define reliability. “Reliability is an all-expansive subject that touches on different types of technology, the goal of which is to improve efficiency in machinery performance,” Elam said. “It requires an intense study of the background functions of the machines.”

Eli Lilly and Company uses robots on an assembly line to carefully package its products.

Eli Lilly and Company uses robots on an assembly line to carefully package its products.

Regardless of the definition, reliability for Eli Lilly always circles back to the human element.

“Patients come through and perhaps are on insulin or a certain pill, or a cancer treatment that has changed their lives,” Wenzel explained. “We listen to them, because it’s not just the medicine that matters, but the packaging and ease of use. It puts what we do in perspective. We take this feedback and incorporate it into our designs. It starts with an end user’s idea and need, goes to design, goes through production, then back to the end user. It’s like a circle of life.”

The research is carefully conducted with the end user always in mind.

“A lot of research is done to make the best fit for each subset of people,” Wenzel continued. “And at the end of the day you have a marketable product that you can be proud of. Being on both sides of the business, you understand why medicine is so costly. But when you find the one niche that helps cancer patients, or the kid who is near death, and then you can be a part of developing this medicine that completely changes his life, it just makes it all worthwhile.”

And yes, it’s personal.

“When you know people who use the products,” Wenzel said, “the work you do becomes a part of you.” MT

Michelle Segrest has been a professional journalist for 27 years. She specializes in the industrial processing industries and has toured manufacturing facilities in 40 cities in six countries on three continents. If your facility has an interesting maintenance and/or reliability story to tell, please contact her at michelle@navigatecontent.com.

297

6:39 pm
February 10, 2017
Print Friendly

Infrared Inspections Of Installed Motors

By Jim Seffrin, Infraspection Institute

randmDespite the important role they play in facilities, electric motors often tend to be out of sight and out of mind—until they fail. Infrared thermography can be a cost-effective diagnostic tool for detecting problems within these systems.

Many infrared (IR) inspection programs focus on motor control circuits, but overlook the actual motors. Infrared inspections of a motor’s bearings and stator should be performed monthly by an experienced, certified IR thermographer that thoroughly understands the theory and operation of electric motors.

Here are the basic steps for performing this type of inspection:

1. Inspect motor casing for localized hotspots that may be indicative of short circuits within motor windings.

2. Qualitatively compare individual motors to similar motors under similar load.

3. When possible, qualitatively compare inboard and outboard bearings for each motor. If a large Delta T is present, it may be indicative of misalignment or a rotor balance problem. If both bearings are hot, the bearings may be worn or improperly lubricated.

4. Additionally, a thermographic inspection of the electrical connections within the motor junction box should be performed annually. This may be done in conjunction with a regularly scheduled IR inspection of the facility’s electrical system.

Because no complicated analysis is required, infrared inspections typically can be performed rapidly and at a fraction of the cost of other types of motor testing. Infrared can also detect evidence of misalignment at lower thresholds than those detectable by vibration analysis and motor-current signature analysis. MT

Words to the Wise: Stick to Facts

0217rmcinfraWhen used as a preventive/predictive maintenance tool, infrared (IR) thermography can detect and document evidence of thermal patterns and temperatures across the surface of an object. The presence of inexplicable thermal anomalies or exceptions is often indicative of incipient failures within inspected systems and structures. Because thermography alone can’t determine the cause of an exception, other diagnostic tools must be employed.

Some thermographers, however, provide opinions as to the cause of exceptions without the benefit of confirming test information. Such opinions are frequently accompanied by elaborate recommendations for repair. When those observations/recommendations are incorrect, they can cause repair efforts to be misdirected.

Unless a thermographer has performed, or has access to, confirming tests, it’s unwise to provide opinions regarding the cause of exceptions and offer suggestions for repair. Lacking confirming test data, a prudent thermographer should make only one recommendation: “Investigate and take appropriate action.”

This simple recommendation can be applied to any thermographic inspection and serves to avoid unnecessary liability by eliminating guesses and sticking to facts.

— J.S.

Jim Seffrin, a practicing thermographer with 30+ years of experience in the field, was appointed to the position of Director of Infraspection Institute, Burlington, NJ, in 2000. This article is based on one of his “Tip of the Week” posts on IRINFO.org. For more information on infrared applications, as well details on upcoming training and certification opportunities, email jim@infraspection.com or visit infraspection.com.

465

8:24 pm
February 9, 2017
Print Friendly

Listen for Impact

Above. Josh Mattson's desktop computer screen displays dB data collected from ultrasound probes that feed software to generate an oil-analysis report. Oil analysis has become a big part of reliability best practices at USG Interiors by providing insight as to when to filter oil, change oil, identify early signs of failure, or use to assist in analyzing data from other technologies such as ultrasound or vibration monitoring.

Josh Mattson’s desktop computer screen displays dB data collected from ultrasound probes that feed software to generate an oil-analysis report. Oil analysis has become a big part of reliability best practices at USG Interiors by providing insight as to when to filter oil, change oil, identify early signs of failure, or use to assist in analyzing data from other technologies such as ultrasound or vibration monitoring.

Josh Mattson drives key reliability programs using ultrasound and root-cause analysis. Continue Reading →

Navigation