Archive | Pumps


3:16 pm
August 14, 2017
Print Friendly

Select The Best Seats for Your Butterfly Valves

randmButterfly valves owe much of their popularity to their economic cost and efficient designs. Among the butterfly valves available in today’s marketplace, the resilient-seated type (the most basic) is the design that’s commonly used in fluid-processing applications.

According to the fluid-handling experts at Crane Engineering (Kimberly, WI), the functionality of a butterfly valve is greatly dependent on its seat, which seals between the pipe flanges and the valve disc. In resilient-seated designs, the stem is centered in the middle of the valve disc that, in turn, is centered in the pipe bore. These valves typically feature a somewhat-flexible seat and rely on the disc for a high level of contact with the seat to ensure a proper seal.

Seat-Type Pros and Cons

Three basic seat styles are available for resilient-seated butterfly valves. A recent post on the Crane Engineering blog discussed the pros and cons of each, including their specific strengths and weaknesses. (Use Table I for quick reference.)

Screen Shot 2017-08-14 at 9.28.59 AM

1708rmcfluidhandling01dBooted (dovetail) seats. These seats have a dovetail shape that mates with the inner-diameter valve bodies. They’re easily removable and serviceable because the fit isn’t physically bonded. Unfortunately, they’re prone to movement when mounted between flanges, resulting in deformation that tends to bulge around the disc-contact points. This sensitivity to mounting conditions limits the versatility of booted-seat butterfly valves. Molded and cartridge seats were developed to address such weaknesses.

1708rmcfluidhandling02dMolded seats. These seats are bonded to the bodies of valves through an injection-molding process. While this provides a direct bond, it makes the seat irreparable. Since the seat is integrated with the valve body, the entire valve must be replaced if the seat becomes damaged. Still, a molded seat’s permanent bond with a rigid valve body has advantages over a booted seat. Molded-style seats also resist deformation and dislocation during valve mounting and are capable of dead-end or vacuum service.

1708rmcfluidhandling03dCartridge seats. These seats are created by compression molding a layer of elastomer onto a rigid phenolic backing ring, which supports the elastomer in multiple directions. This process is much more consistent than the injection molding used to create molded-style seats. It provides constant pressure to form the seat shape and maintains tight control of its dimensions. Because of the tight tolerances, cartridge seats offer the best torque consistency and highest wear resistance. This type of seat also improves upon the molded style by making the seat replaceable. In highly abrasive applications, i.e., where valves need to be replaced on a regular basis, the cartridge seat could simply be replaced rather than the entire valve.

Cartridge seats offer advantages unmatched by other seat styles. When the valve body has an integrated retaining lip, a cartridge-seated valve is capable of dead-end service. Unlike booted or dovetail seats, cartridge seats can more efficiently operate in a system that requires vacuum service.

Update Your Valve-Speak

To learn more about general valve terminology, download Crane Engineering’s  “Ultimate Glossary of Valve Terminology”. MT

Crane Engineering is a distributor of industrial-grade pumps, valves, filters, wastewater-treatment equipment, and other fluid-processing technology. Services include repair, corrosion-resistant coatings, and skid-system design and fabrication. For more information and instructional videos, visit


2:27 pm
August 14, 2017
Print Friendly

Water, Wastewater Pumping Trends and Solutions

Extending the life of R/O membrane fibers is accomplished through pH adjustment and by administering scale inhibitors–both of which are dosed using metering pumps. Photo courtesy of LMI, Milton Roy.

Extending the life of R/O membrane fibers is accomplished through pH adjustment and by administering scale inhibitors–both of which are dosed using metering pumps.
Photo courtesy of LMI, Milton Roy.

Advancements in water treatment and plant modernization drive growth in the water and wastewater pumping industry.

By Michelle Segrest, Contributing Editor

While new construction in the municipal water-treatment market has remained relatively flat, growth in the industrial water-treatment market has increased—driven largely by modernization efforts that seem to be pervasive across the power-generation segment, according to Charles P. Crowley Company (CPC, Baldwin Park, CA, managing director Jon Crowley. One trend that Crowley sees throughout the industry is modernization through “repowering.”

Repowering process

The repowering process involves replacing old coal boilers with gas-fired turbines that send heat to a heat-recovery steam generator (HRSG), which feeds a steam turbine. These types of systems can increase electricity production and overall efficiency of the plant by as much as 40% more than coal-fired plants. They help plant owners reduce costs—specifically maintenance costs—as newer, modern systems are easier to work with, Crowley said. The switch to natural gas results in other savings because feed stocks are abundant, less expensive, and easy to transport to plant sites.

For decades, plants in areas such as California and Nevada have been at the forefront of the environmental movement. Many have already made the switch to natural gas. Crowley points to a global modernization effort that is following California’s lead—as plants in other parts of the United States, Mexico, China, India, and elsewhere around the globe, are standardizing on natural gas.

Like all power plants, gas-fired plants require a lot of water. This boiler feed-water must be treated to avoid scale, corrosion, and other problems that damage or impede the boiler’s performance. There is a direct correlation between the quality of the water used and the efficiency of the plant. Depending on the feed-water quality, varying levels of pretreatment are necessary to remove impurities and suspended solids, and to adjust the water’s pH to a neutral level. 

Reciprocating and rotary gear pumps are widely used to inject the precise dosage of chemicals needed for these applications. 

Water-treatment solutions

Most businesses in the United States have a need to treat the water they use—whether they are food growers, juice makers, product manufacturers, or businesses such as hotels and restaurants. Some of the processes used include reverse osmosis (RO), pH adjustment, and scale inhibitors.

Reverse osmosis. RO treatment processes work by using a semipermeable membrane to remove ions, molecules, and particles from water. “By applying pressure that is greater than the naturally occurring osmotic pressure, the water seeps through the membrane, while the larger molecules or ions remain trapped in the membrane,” explained Fluid Systems & Controls (FSC, New Berlin, WI, president Donn Davis. “This process demineralizes the water.”   

In areas such as Florida and throughout the Southeastern United States, Davis said he sees a growing demand for RO applications and the associated treatment and maintenance applications that come with maintaining RO systems. 

“FSC works with OEMs that build large-scale reverse-osmosis systems,” Davis said. “Metering pumps are used to move pump chemicals that clean and maintain the RO membranes.” 

RO membrane fibers are cellulose based. They degrade in alkaline conditions, which results in a loss of efficiency. Long-term exposure to alkaline conditions leads to membrane replacement, which is extremely expensive. According to Davis, extending the life of the membrane fibers is accomplished in two primary ways—through pH adjustment and by administering scale inhibitors—both of which are dosed using metering pumps.     

pH adjustment. Raw pre-treated water tends to be slightly alkaline. To protect the membrane, the pH of alkaline raw water is adjusted to neutral, by injecting precise amounts of acids (typically hydrochloric acid), to lower the pH. 

Once the treated (or permeated) water passes through the membrane, it can become slightly acidic. To deliver the best water quality possible, the pH is often re-adjusted using caustics (typically sodium bicarbonate) to achieve a neutral pH. Metering pumps are primarily used to inject the precise amounts of caustics needed for the process.

The specifics of pH balancing are not as stringent as what a municipal drinking-water plant would administer, however the timing of the treatment is uncompromising. Power plants run 24/7 operations and cannot function without abundant supplies of treated water. As such, the pumps used must be highly reliable and able to run continuously.

Following the initial treatment, process water flows to a flocculation basin where chemicals are dosed using metering pumps to aggregate precipitated particles, making them easier to filter out. After this treatment, the coagulated particles settle in a basin where they separate from water and are sent to a sludge-treatment facility.

Scale inhibitors. Other water-treatment applications include administering scale inhibitors for cooling towers. Although water is ideally suited for cooling purposes, its life-giving properties can encourage bacterial growth that can foul system surfaces. Water also dissolves gases (oxygen and carbon dioxide), which can corrode metals. If untreated, scale deposits and fouling can reduce heat transfer and diminish the plant’s efficiency. To protect plant equipment, precise doses of sulfuric acid or phosphate are added to the cooling-tower water to mitigate scaling and to prevent fouling, Crowley explained.

“Once the process water is used, it must be treated before it can be disposed,” he said. “Most power plants have their own wastewater-treatment plants, and these units administer another round of pH adjustment, plus any other treatments required to meet the local environmental-discharge limits.”

One by-product of the RO process is that suspended solids, microorganisms, and mineral scales accumulate on membranes. To extend the life of the RO membranes, and to increase the efficiency of the treatment process, a wide variety of scale inhibitors is dosed by metering pumps on the membranes. 

“Precise dosing saves money on chemical costs and also helps to prevent calcium-carbonate scaling,” Davis added. “Without scale inhibitors, membranes could become saturated with heavy elements that reduce efficiency and clog the process in as little as 48 hours. The metering pumps used to dose the scale inhibitors play a key role in maintaining the equipment.” 

To protect piping infrastructure, scale inhibitors are dosed using metering pumps. Photo courtesy of Pulsafeeder.

To protect piping infrastructure, scale inhibitors are dosed using metering pumps. Photo courtesy of Pulsafeeder.


Many OEMs in the water and wastewater industry have their own maintenance teams. When it comes to maintaining their pumps, some customers know exactly what spare parts they need. Others leverage the expertise of distributors by outsourcing their inspection and maintenance activities.

For example, CPC sells pumps and skidded systems directly to power plants throughout Southern California and Nevada, and they also sell to large OEMs that service the power industry around the globe. These OEMs do not specialize in maintenance. Much of the servicing and repair work comes back to the distributor or service company.

Because uptime is of paramount importance, the maintenance teams at power plants demand a responsive distribution network, with parts that are always in stock and expert service technicians that can respond in a moment’s notice. 

A majority of the water-treatment applications in power plants are best served by rotary-gear pumps. Their seal-less design is easy to maintain because there are no leak points for harsh chemicals to damage the pump or surrounding equipment.   

Because every inch in a power plant is valuable, plant operators prefer pumps with small footprints. The trend is to move away from horizontally laid infrastructure.

“Vertical configurations are less susceptible to flooding, they are easier to work on, and they don’t require staff to crawl on the floor to access,” Crowley said. “The ergonomic, front pull-out-designed pumps can be repaired in place. This minimizes downtime by eliminating the need to lock out/tag out the pump and move it to the repair shop—which, in some plants, must be done by a separate union employee.”

Maintenance activities can be further streamlined by selecting pumps that require a limited number of parts and with pumps that use symmetrical parts that only fit one way. This simplifies parts replacement and keeps repair time to a minimum. RP

Seven trends to Watch in 2017

Bluefield Research (Boston) has forecast seven trends to watch in 2017, and they show significant opportunities for private corporations. These include an emphasis on big data and the Internet of Things, as well as new business models driven by rising water and wastewater bills. Water rates are rising at an average 7% every year, Bluefield stated.

Through its ongoing market tracking and analysis, Bluefield’s water experts anticipate shifts across municipal and industrial water markets. Seven key trends that will have an impact on the water industry in 2017 include:

• Infrastructure investment at the forefront.
Rate escalation sets the stage for business-model innovation.
Developed markets forced to confront aging networks.
Water gets smart with an emphasis on Big Data and IoT.
Bottom line enables innovation for industrials.
California sets the stage for water reuse.
Private sector looks to water for opportunity.

Additional analysis from the firm’s experts about each signpost is available at no cost. The forecast provides valuable insight for environmental managers and water companies about what to expect and market opportunities.

Making Wastewater Pumping Systems Smarter

In the wake of a renewed interest in federal investments in infrastructure, the District of Columbia Water and Sewer Authority (DC Water) and Xylem Inc. (Rye Brook, NY) partnered to highlight the urgent need for investing in smart-water infrastructure to maximize operational productivity. 

In a report released in early March 2017, the American Society of Civil Engineers (Reston, VA) estimated that the U.S. needs to invest a minimum of $123 billion/yr. in water infrastructure over the next 10 years to achieve a good state of repair.

To advance research and development in the area of smart-water infrastructure and advanced data analytics in the sector, Xylem and DC Water expressed a commitment to accelerating innovation through field-driven pilots that focus on increasing the productivity of managing water and wastewater and improving the resilience and sustainability of those operations. 

“In the U.S., our water and wastewater infrastructure faces a daunting investment gap that places these critical systems at risk and leaves our communities vulnerable to the consequences of system failures,” said Patrick Decker, president and CEO of Xylem. “We are so pleased to be able to partner with DC Water–a true industry leader–to address these challenges, leveraging technology to develop new, more sustainable solutions.”

George Hawkins, CEO and general manager of DC Water, said, “At DC Water, we’re always looking down the road for the next innovation that will help us do our job better, at less cost. This new technology accomplishes that and I’m excited about the implications not just for us, but for the industry as a whole. It’s also an important demonstration of partnerships between the best elements of private-sector innovation and public-sector operational know-how, and I’m proud to be on the forefront of this effort.”

DC Water’s service area covers approximately 725 sq. mi. and the enterprise operates the world’s largest advanced wastewater treatment plant with a capacity of 384 million gal./day and a peak capacity of 1.076 billion gal./day.

Michelle Segrest is president of Navigate Content Inc. She specializes in creating content for the industrial processing industries. Please contact her at

For more information on Fluid Systems and Controls, visit Information about LMI pumps is at The Charles P. Crowley Company is at For more information on Pulsafeeder, visit


7:14 pm
July 12, 2017
Print Friendly

What’s Your Noisy Pump Really Saying?

Centrifugal pump and motor in power plantBy Eugene Vogel, Electrical Apparatus Service Association (EASA)

Everybody likes a quiet pump–it just does its job, leaves you alone, and doesn’t break down often. But a noisy pump raises concern. Although the noise is often attributed to cavitation, not every noisy pump is suffering from this problem. Failing bearings, flow turbulence, recirculation, and even a machine’s mechanical or electrical geometry can generate noise, any of which may be a more immediate problem than long-term damage from cavitation.

Cavitation erodes the suction eye of the impeller without affecting its other surfaces. Disassembly and inspection will confirm if significant cavitation is responsible for pump noise, but the first step is to rule out other potential causes with non-intrusive tests.

Rule out bearing noise.

To determine if the noise may be due to failing bearings, listen on the pump volute and bearing housing. An ultrasonic listening device is helpful, but a mechanic’s stethoscope will do. If the sound is louder on the volute than on the bearing housing, bearing noise can be eliminated as a source.

randmChange suction pressure.

Next, increase the suction pressure (head) if possible and listen for a decrease in the noise. If suction head can’t be increased, reduce it and listen for an increase in noise. Cavitation is directly related to suction head and flow, so changing either of these should cause cavitation noise to change accordingly.

Check for recirculation.

If suction head changes have little effect on the noise, the source may be recirculation resulting from a discharge flow restriction, perhaps due to a blockage or closed discharge valve. For closed systems without flow-rate instrumentation, verifying flow may not be easy. A portable flow meter attached to the outside of piping will provide accurate data, but such instruments can be expensive.

Another approach is to open a drain valve in the discharge line near the pump and allow flow to exit the system. If this reduces the noise at the pump, the flow through the system is very likely restricted, and recirculation is the source of the noise. Recirculation can damage pump impellers and volutes and subjects the pump to unnecessary vibration. Of course it’s also a waste of the energy consumed by the pump.

Determine if the noise is related to mechanical and electrical geometry.

If changes to neither the suction head nor discharge flow alter the noise characteristics of the pump, the sound is probably mechanical in nature. Mechanical sounds occur at specific frequencies related to the machine’s mechanical and electrical geometry. Vibration-analysis techniques can identify and characterize these sounds and their relationship to any mechanical forces.

The most common frequency of sound and vibration in centrifugal pumps is vane-pass frequency, which occurs at the multiple of the number of impeller vanes and the rotating speed. Technicians familiar with pumping machinery may well be able to audibly separate the vane pass and other mechanical sounds from the random noise of cavitation and recirculation.

In other words

Your noisy pump may be telling you something important. With a methodical approach and through the process of elimination, you can translate its language and avoid pump failure. MT

Eugene Vogel is a pump and vibration specialist at the Electrical Apparatus Service Association Inc. (EASA), St. Louis. EASA is an international trade association of more than 1,900 electromechanical sales and service firms in 62 countries that helps members keep up to date on materials, equipment, and state-of-the-art technology. For more information, visit


5:17 pm
June 22, 2017
Print Friendly

New Pump Sizes

1703mtprod15pThe company has added the G, AK, AL, and M sizes to its existing series of universal seal pumps. The heavy-duty, foot-mounted pumps are designed for a range of applications that require continuous operation at pressures to 200 psi or more for high fluid viscosities at reduced operating speeds. Units can be used for thin and thick liquids and are said to operate equally well in either direction and operate under suction lift conditions. Seal options include packing, single-component seals, cartridge lip seals, and cartridge single and double mechanical seals. Various seal flush plans are also available.
Viking Pump
Cedar Falls, IA


6:11 pm
May 15, 2017
Print Friendly

Slurry-Pump Tips: Extend Mechanical Seal Life

Selecting the right pump with the right type of mechanical seal is the first step toward slurry-pumping success. (Photo copyright ITT Goulds Pumps)

Selecting the right pump with the right type of mechanical seal is the first step toward slurry-pumping success. (Photo copyright ITT Goulds Pumps)

Although you may consider mechanical seals to be relatively small components in slurry-pumping systems, they can be the crucial bridge between failure and success. An incorrect or poor seal selection can cause major damage to the pumping system. The bottom line: If your operation wants to get the most from its slurry pumps, the choice of mechanical seals is crucial. Fluid-handling experts at Crane Engineering (Kimberly, WI, offer several tips for extending the life of these components.

— Jane Alexander, Managing Editor

Seal Considerations

As discussed in a recent blog post on, increasing slurry-pump reliability starts with an understanding of the challenges involved in moving highly abrasive fluids such as manure, cement, and starch. These pumps clearly have their work cut out for them. Thus, when selecting a mechanical seal for slurry service, pay attention to these details:

randmRobust design characteristics. Heavy slurry usually involves a high solid content. A seal design that can withstand erosive impacts while protecting the seal faces is a must. Specially designed seals for slurry applications typically feature durable construction materials, hardened faces, and heavy-duty springs to ensure the seal faces have the correct pressure setting to seal the system.

Restriction bushings. When pumping a slurry mixture, process pressure will naturally drive the particle-filled fluid into the sealing interface, causing abrasion and accelerated wear. A restriction bushing isolates the mechanical seal from the harsh process so that the seal is mostly sealing the cleaner, cooler flush fluid.

Proper flushing. A proper flushing plan will keep abrasives away from the seal faces. Seal flushing also keeps things moving in the stuffing box to prevent solids stagnation and build-up. As with any pumping application, you should always avoid dry running conditions.

Additional Considerations

Choosing the proper seal for a slurry pump is just part of the equation. It’s also imperative to select the right pump for the job and to maintain it properly.

As with other pumping systems, poor equipment conditions caused by bad bearings, cavitation, excessive impeller loads, and misaligned shafts can lead to excessive vibration and shock to the mechanical seal. A slurry pump running under these conditions will generate more heat and more opportunity for abrasives to enter the sealing interface. MT

Lubricating Film Matters

According to Crane Engineering’s fluid-handling experts, regardless of your pumping application, a lubricating film at the sealing interface is always needed.

A film that is too thick will increase leakage and may allow particulate between the mechanical seal faces, increasing wear from abrasion. Conversely, a film that is too thin will generate heat and degrade materials. Keeping the sealing interface cool and clean will promote longer seal life.

Crane Engineering is a distributor of industrial-grade pumps, valves, filters, wastewater-treatment equipment, and other fluid-processing technology. Services include repair, corrosion-resistant coatings, and skid-system design and fabrication. For more information and instructional videos, visit


7:25 pm
April 13, 2017
Print Friendly

Surge Vessels Address Hydraulic Shock

Properly implemented surge vessels can optimize pump/piping-system performance and address hydraulic shock.

By Frank Knowles Smith III and Steve Mungari, Blacoh Fluid Controls Inc.

Damage to pumps and piping systems from hydraulic shock, also known as water hammer, can often result in catastrophic failure, along with expensive repair and downtime. 

In the world of petrochemical processes, hazardous conditions resulting from pump damage or line breaks can also bring about significant liability concerns, along with very negative publicity. With many plants and facilities currently in operation without protection against hydraulic shock, what can be done from a maintenance, repair, and operations (MRO) standpoint to avoid this inevitable problem? 

The issue

Under steady-state conditions, a plant’s pumping system will tend to operate near the nominal working pressure unless there is change of flow velocity. This change is defined as hydraulic shock and immediate mitigation efforts are needed to prevent damage from occurring. 

This fluid acceleration or deceleration can be attributed to several likely causes, with the most common being from either “pump trip,” or sudden valve closure. A pump trip, generated by sudden loss of power to the pump station or by a pump stop without warning, can drop the working pressures near the pump’s discharge side to negative levels and cause possible vapor-pocket collapse.

The sudden valve closure from electrical, hydraulic,  or mechanical failure, or from human action, can result in a dramatic increase in pressure at the inlet side of the closed valve. That pressure increase is experienced as high-velocity (potentially exceeding 4,000 ft./sec.) transient pressure waves that will oscillate throughout the piping network unless the transient wave energy can be suppressed. 

Pipes that shake violently, even occasionally with restrained piping, and with loud banging noises are the ones typically experiencing hydraulic shock. Pumps and motors are also likely to be damaged concurrently as the transient-pressure energy waves travel back through the pump until the check valve slams shut.    

Weak points in the piping network, such as flange connections and pipe elbows, tend to bear the brunt of the pressure wave’s damaging effect and are often the first to break.    

In a single-pump system, several transient-mitigation options are available to address the transient wave’s effects. Some of the most popular are surge vessels, air-release/vacuum valves, pressure-relief valves, surge-anticipator valves, and vacuum breakers. Even with an existing facility or pipeline, space is often readily available to accommodate which specific pieces of mitigation equipment are necessary to solve the problem. However, what does the facility do when the plant is pumping in series?

Case in point

A large oil-industry customer, involved with a chemical-process application, was looking for a way to protect their pumping system infrastructure from damage and repair expenses, along with reducing lost product costs from the breaks. 

For their application, a booster pump (which requires a minimum of 100 psi NPSH (net-positive suction head) is located approximately 10,000 ft. from a high-pressure injection pump. When power is lost at the booster pump’s location, with the high-pressure pump operating, a transient negative-pressure wave is generated. 

This wave causes a sudden pressure drop at the booster pump’s discharge side and travels at approximately 4,000 ft./sec., making contact with the high-pressure pump. In this situation, it’s important to protect the high-pressure pump from cavitation damage and maintain a minimum 100 psi NPSH on the booster pump.

Monitoring and protecting

Should the high-pressure pump trip when the booster pump is running, a high-pressure “up surge” transient pressure wave will be created at the inlet flange of the high-pressure pump. High pressure can also bypass the check valve and cause additional damage.

A properly sized surge vessel, with the sizing calculated through the use of computer surge-analysis software at the high-pressure pump, will accept energy from the pump trip. It will also be able to accept energy (compress vessel gas volume) on a high-pressure pump trip. 

On the high-pressure pump trip, the flow will stop, based on the system demand, and will pump dynamic head. However, there is a concern of reversal of flow back through the high-pressure pump from the up-surge transient wave due to check-valve closing time. 


Fig. 1: Negative-pressure transient wave. Graph shows a transient negative-pressure wave on a pump’s discharge side that occurs when power is lost to a booster pump. Green shows booster-pump pressure and red shows high-pressure-pump pressure.

A properly sized surge vessel will accept the transient energy, but check-valve closing time will vary,  based on factors such as type of valve and pipe size. With the specific closing time a critical factor to the accuracy of the results from the computer surge analysis, this must be properly entered into the analysis. The results of the analysis can be verified at the time of commissioning using a report from a transient pressure-monitoring system, with the data being read and recorded at a minimum of 100 times/sec.

Fig. 2: Pressure variation without a surge vessel. Fig. 2 shows pressure variation in a system that is not equipped with a surge vessel. Green is the booster-pump pressure and red is high-pressure-pump pressure.

Fig. 2: Pressure variation without a surge vessel. Fig. 2 shows pressure variation in a system that is not equipped with a surge vessel. Green is the booster-pump pressure and red is high-pressure-pump pressure.

When evaluating how to size a surge vessel to deliver energy, or to keep the high-pressure pump’s NPSH correct in time to de-energize, further computer surge analysis is needed. In this example, the graph in Fig. 2 shows the booster pump tripped (pressure shown in green) while the high-pressure-pump suction pressure is shown in red. In monitoring the liquid level and pressure in the high-pressure pump’s suction-stabilizer surge vessel, the high-pressure pump can be successfully de-energized in 15 sec.

Fig. 3: Surge-vessel pressure at booster pump. Figure 3 shows the pressure inside of a surge vessel at the booster pump.

Fig. 3: Surge-vessel pressure at booster pump. Figure 3 shows the pressure inside of a surge vessel at the booster pump.

The pressure drop to the high-pressure pump’s minimum NPSH will keep the pump protected. Figures 3 and 4 show the change in pressure inside the surge vessel placed at the booster pump and at the high-pressure pump.

Fig. 4: Surge-vessel pressure at high-pressure pump. Figure 4 shows the pressure inside of a 106-ft3 surge vessel at a high-pressure pump.

Fig. 4: Surge-vessel pressure at high-pressure pump. Figure 4 shows the pressure inside of a 106-ft3 surge vessel at a high-pressure pump.

By making use of computer surge analysis to correctly assess the conditions with the booster and high-pressure pump conditions, the customer was able to understand how properly sized and placed surge vessels can assure optimize operational performance by confirming proof of design with transient monitoring of pressure and flow.

With the surge vessels properly located, potential damage to the pumps and piping network from hydraulic shock was eliminated. As a result, considerable time and equipment cost savings were realized.RP

Frank Knowles Smith III is executive vice president of the Surge Control team at Blacoh Fluid Controls Inc., Riverside, CA ( He has three decades of academic, design, and application experience. Steve Mungari is the business development manager at Blacoh. He has more than 20 years of process-control experience in the areas of fluid measurement and control technologies.


7:11 pm
April 13, 2017
Print Friendly

Pump OEMs Address Oil and Gas Trends

Pump suppliers discuss trends and challenges in the oil and gas industry involving smart technology, competitive delivery, and optimized equipment efficiency.

As the use of vapor-recovery units (VRU) at oilfield storage-tank facilities grows, so does the need to understand that proper skid-assembly installation will help guarantee their reliable performance.

As the use of vapor-recovery units (VRU) at oilfield storage-tank facilities grows, so does the need to understand that proper skid-assembly installation will help guarantee their reliable performance.

By Michelle Segrest, Contributing Editor

Speed, portability, and reliability are key factors in optimizing production times and the bottom line in the oil and gas industry, according to experts from major pumping technology companies.

Glenn Webb, senior product specialist for Blackmer, Grand Rapids, MI, a leading brand from PSG, (Oakbrook Terrace, IL) said that the most obvious positive manifestation of the ongoing oil and natural gas production boom in the United States can be seen on street corners across the nation. At the end of January 2014, the average price at the pump nationwide for a gallon of gasoline was $3.28. One year later, the price for a gallon of gas had plummeted to $2.04.

Increased production in such prominent shale fields as the Bakken in North Dakota, Eagle Ford in Texas, Niobrara in Colorado, and Marcellus and Utica in New York, Ohio, West Virginia and Pennsylvania, has increased the demand for gathering, transport, and terminal systems that can store raw crude oil and natural gas until it can be shipped by truck, train, or pipeline for refinement and consumption With these increased challenges come innovative solutions.

Smart instrumentation

Some companies offer valve and pump products with smart instrumentation to monitor factors such as motor vibration, pump vibration, inlet pressure, outlet or discharge pressure, pipeline temperature, gear-box oil temperature, voltage, amp draw, supply pressure to valve controllers, actuator blow by, and smart-wear monitoring of internal wear components, according to Todd Loudin, president of North American Operations and VP Global Sales for Flowrox Inc., Linthicum, MD.

Loudin said Flowrox has experienced three major challenges for the oil and gas industry:

The price of crude. Many oil producers, especially within shale regions, require a minimum of $30/barrel. But only about 50% of the wells in the Bakken or Permian Basin break even at $30/barrel. The other 50% break even at around $60/barrel. There are some wells that have difficulty breaking even at as high as $100.

Capital investment has been slashed by the industry. Of course, investments will occur that are imperative to continued production, but budgets have been constrained, Loudin said.

A significant reduction in work force. One solution that the oil industry has embraced, according to Loudin, is intelligent instrumentation and monitoring for the production and refining process. “Some of these systems are not ideal and useable to the people doing maintenance or rebuild work,” Loudin stated. “The main variables are typically displayed on a distributed-control system (DCS) with an operator who can provide information on pressure, temperature, flow, and other variables. However, the person in the field does not have easy access to this information. One way we are helping companies in all industries is through our Malibu Smartware. This system creates a 3D visual of the process and process equipment. Key operational information on a given asset can be viewed by an operator or maintenance person on their smart phone, tablet, or PC, wherever they are. They can be standing right in front of the asset and see operating parameters, maintenance videos, drawings, past work history on the asset and even can get confirmation about spare parts in stock for repair.”

This software captures data regardless of where it is stored in the facility or offshore rig and provides it at the device level with only one username and password. To further expand on the use of smart software, it can allow condition monitoring of all kinds of assets, Loudin added. Through predictive analytics, the system learns what a normal condition looks like. When anomalies occur, warnings are sent to maintenance personnel.

These solutions can be cloud based or housed on the owner’s servers or their own secure cloud. The system uses the same encryption as the Internet banking industry.  

Quality manufacturing

Mark Weidmann, vice president sales-Midstream/Downstream O&G at PumpWorks610, a DXPE Company (Houston) said that customers ask him everyday, “Do our pumps, products, and services address cost, quality, efficiency, and reliability issues?” He said the simple answer is “yes,” however, this doesn’t happen in a vacuum.

Weidmann explained that his company is experiencing seven key trends:

Speed of delivery. “The longer you wait for your pump supplier to get back to you with what you requested, the more money you lose,

“Investment in manufacturing efficiencies and getting pump selection information into the hands of customers is vital. The issue that we now face is that demand has outstripped supply. This is especially true in the case of centrifugal pumps engineered for specific applications and specifications.” 

Mergers and acquisitions. “We all see the acquisitions happening in the industry now,” he said. “The big companies get bigger and the lead times for projects are getting smaller and tighter. DXP Rotating Equipment Divisions’ ability to remain nimble and supremely focused on the engineering, manufacturing, testing, and delivery of these highly specialized centrifugal pumps remains key to our core values.”

Price. Material selection has become critical, Weidmann stated. “For example, carbon steel can save money over ductile iron,” he said. “But it’s not just about the quality of the metallurgy, it’s also about intangibles.” Companies who offer in-house engineering and testing, and extended warranties, are getting a competitive edge.

Supply and demand imbalances seem to be tightening. Most outlooks call for supply and demand equilibrium by early 2017.

Moderate demand. Global and U.S. oil demand continues to show moderate but steady growth.

LNG export. More U.S. LNG export capacity is expected to hit the market.

Cost control. Oil companies have learned how to operate in a lower-price environment, returning to a healthier focus on capital and operating cost discipline.

Weidmann said his company tackles these challenges with vertical integration of its manufacturing processes.

Vapor-recovery units

The increase in oilfield activity has also meant a corresponding increase in the amount of vapors that are created and emitted during production, transportation, and storage, according to Webb. To prevent the escape and loss of these vapors—which are saleable assets in addition to being potentially dangerous to the environment—many operators installing vapor-recovery units (VRUs) at their oilfield storage sites.

“The growth in the amount of vapors that are a by-product of oilfield production activities is not going away,” Webb said. “Neither is the attention that regulatory agencies will be paying to the levels of vapors that are emitted into the atmosphere and whether or not they can be harmful. That’s because many oilfield vapors have been classified as hazardous air pollutants or volatile organic compounds by the U.S. Environmental Protection Agency.”

Basically defined, a VRU is a system composed of a scrubber, compressor, driver, and controls designed to recover vapors that are formed inside completely sealed crude-oil or condensate storage tanks. During the VRU’s operation, the controls detect pressure variations inside the tank and turn the compressor on and off as the interior pressure exceeds or falls below pre-determined settings. When the compressor is running, it passes the vapors through the scrubber, where any liquid is trapped and returned to the tank, while the vapor is recovered and compressed into natural-gas lines.

As the oil and gas industry faces changing demand, low per-barrel prices, large supplies with varying extraction costs, and competition from renewable resources, producers are turning to manufacturers of pumps and related control equipment for increased reliability, efficient performance, and solutions for product handling and storage. Pump manufacturers are delivering, resulting in higher efficiency throughout the oil-and-gas handling process. RP

Michelle Segrest is president of Navigate Content Inc. She specializes in coverage of the industrial processing industries. Please contact her at


8:52 pm
March 16, 2017
Print Friendly

Intelligent Water Making Strides towards Predictive Analytics

EXCEL XR metering pumps are designed for the specific chemical pumping requirements of municipal and industrial water treatment.

Last week, I ran across a Smart Water spending forecast from Bluefield Research and this week there’s an interesting post from Jim Gillespie, co-founder of Gray Matter Systems, a system integrator for cloud solutions and predictive analytics. All signs point to an increased spend in this sector for pump and motor sensors, but where will this investment come from?

According to Gillespie and his post on TechCruch, utilities may be able to sell “solutions” to other wastewater operations like the power industry has done. Gillespie cited how the District of Columbia Water and Sewer Authority has commercialized their intellectual property, giving them a new revenue channel. The water district is commercializing their water ammonia versus nitrate algorithm and selling it other treatment plants, according to Gillespie.

>> More || Smart Water Infrastructure Continues to Grow, but Real Challenges Persist

As I noted last week, new investment dollars are hard to come by but there’s are a lot of new use cases in the wastewater space, see below:

Another IIoT development, a new SaaS application that’s set to launch later this month, will calculate wastewater clarifier tank performance — providing quick analysis on a critical step in the wastewater process. The tool, called ClariFind, alerts utilities as they’re getting close to a failure before they experience it. ClariFind will predict when sludge will overflow and be released. This kind of problem causes EPA issues and fines that can run in the millions of dollars. It will also be able to predict a thickening failure, which is when the effluent doesn’t settle correctly and creates a costly sludge blanket in the tank. ClariFind is just one part of a water operations suite of productivity enhancers — solutions as a service.

Read the Full Post on TechCrunch >>

1601Iot_logoFor more IIoT coverage in maintenance and operations, click here!