Archive | Lubrication Management & Technology


2:56 pm
September 13, 2016
Print Friendly

Win the War with ‘Lubrication by Design’

Use aviation-style checklists to eliminate ambiguity and errors in your lubrication-maintenance procedures.

By Ken Bannister, MEch Eng (UK) CMRP, MLE, Contributing Editor

The Sample Gearbox-Lubrication Checklist in the table below points to Hi-Lo fill indicators that help personnel make simple, yet correct, Go/No-Go decisions when checking lubricant reservoirs. Image courtesy of EngTech Industries.

The Sample Gearbox-Lubrication Checklist in the table below points to Hi-Lo fill indicators that help personnel make simple, yet correct, Go/No-Go decisions when checking lubricant reservoirs. Image courtesy of EngTech Industries.

Arguably, the most used and abused instruction in the field of practical lubrication is “lubricate as necessary.” The origin of that advice is often attributed to the OEM’s (original equipment manufacturer’s) machine operation and maintenance manual.

OEMs typically prefer to use subjective language when outlining a maintenance approach in their manuals. As a consequence, they rarely provide accurate lubrication instructions based on the ambient condition factors found in the end-user’s working environment. This is especially true when the OEM sells its equipment globally through third-party agencies and retains little control—or understanding—of how and where that equipment is used. The level of subjectivity is further amplified when an unsuspecting and/or unenlightened maintenance-department person follows, without question, the unaltered written instructions.

A key component in reliability and performance improvement—with regard to maintenance personnel and machines—is consistency of effort. This type of consistency is afforded through an understanding in two major areas:

  • the impact that a current operating environment has on machinery requirements
  • who, exactly, performs lubrication tasks.

The highest level of reliability possible with any machine is primarily achieved as a result of the simplest of maintenance observations and tasks, based on the equipment’s weakest links. A machine’s weak links typically present themselves in two formats: consumables and adjustables. Often thought of as “nuisance” or “pain” points, weak links are instantly identifiable systems or components of an equipment system that require regular or constant replacement or modification. Lubrication falls into both of these categories.

Recognizing your work environment

The checklist below points to number- and color-identification of grease nipples and grease guns as a way to quickly and accurately determine the correct lubricant amount and type for each bearing in the referenced gearbox. The solution shown here is from OilSafe (, Rockwall, TX.

The checklist below points to number- and color-identification of grease nipples and grease guns as a way to quickly and accurately determine the correct lubricant amount and type for each bearing in the referenced gearbox. The solution shown here is from OilSafe, Rockwall, TX.

Lubricants are considered consumables because of their propensity to leak out of a closed environment or deteriorate in service, thus requiring replenishment or full replacement. A machine’s working environment can dictate how quickly the lubricant will deteriorate. For example, a bearing operating in an extreme wet, damp, hot, or dirty environment, similar to that in a foundry, mining operation, or steelmaking operation, will call for a more intensified approach to lubrication management than bearings that are operating in “white-room” HEPA-filtered environments such as those found in pharmaceutical-manufacturing operations.

Lubrication-delivery systems also require monitoring to determine application requirements and schedule adjustments based on changing needs. For example, using a manual greasing approach in bearing lubrication will require a change in PM (preventive maintenance) frequency when moving from a single-shift to double-shift operation. Similarly, in changing to an automated lubricant-delivery system, note that the lubricant reservoir will likely require replenishment at twice the previous (manual) rate and necessitate an adjustment of the lubricant-fill cycle.

Recognition of your working environment, and tailoring your lubrication approach accordingly, is the first step to implementing a “lubrication by design” method and, ultimately, achieving true lubrication effectiveness.   

Objective instruction and interaction

Instructing an operator to “lubricate as necessary” will only guarantee a subjective decision about which lubricant is to be used, as well as how much and how often. Subjectivity, in turn, invokes inconsistent behavior leading to lubricant cross contamination, over or under filling reservoirs, bearing-seal breaching, or starving bearings. These situations all reflect high-risk behavior that can easily result in premature, yet preventable, machine failure and downtime. They don’t have to be a problem in your plant.

In Dr. Atul Gawande’s 2009 best-selling book, The Checklist Manifesto: How to Get Things Right (Metropolitan Books, New York), he described the first military test flight, more than 75 years earlier, of the Boeing B17 bomber that had been introduced in the late 1930s. Ending in a crash due to a simple oversight by the most experienced pilot in the U.S. Army at the time, this flight led to the aviation industry pioneering operational and maintenance checklists.

Designed to overcome human ineptitude, attitude, and ignorance, the aviation checklist, written in simple and exact language familiar to the profession, was instituted to ensure that each and every pilot, from that point on, followed a consistent, set procedure prior to takeoff and landing. As head of the World Health Organization’s “Safe Surgery Saves Lives” program, Dr. Gawande successfully adapted that checklist into a simple, innovative tool for the medical field—and subsequently credited its use for a dramatic reduction in hospital and surgical deaths, regardless of hospital conditions. There’s a significant takeaway from this story for those of us who have an interest in the health and well being of industrial equipment and processes.

Lubrication checklists that don’t challenge or insult maintainers or operators (but are designed correctly and written in a concise manner similar to those used in the aviation and medical fields) can overcome ignorance and ineptitude and promote low risk through a high degree of consistency.


Take, for example, the sample checklist in the table above. Written in objective language, it points to minor, required steps for making modifications to the lubrication-system components of a gearbox. It specifically references Hi-Lo-fill indicators on the lubricant-reservoir sight gauge that help personnel make simple, yet accurate, Go/No-Go decisions when checking the reservoir, and a number and color identification of the grease nipple and grease gun that’s used to visually identify the correct lubricant amount and type for each bearing.

Color, though, is just one aspect of identification called out on the checklist. It also references the exact grease point and reservoir number, the specific grease that is to be used, and the amount of the grease to be deployed in displacement and grease-gun shot action. To correctly perform the procedures in this sample checklist, a grease-gun consolidation program—wherein all current grease guns are surrendered and replaced with one grease-gun style—must be implemented. This allows the maintenance group to determine the exact displacement by volume and gun “shot” action for all grease deployed in the plant. Different greases are assigned specific grease-gun and grease-point colors.

Bottom line

This “lubrication by design” approach requires almost no capital outlay. With some minor organizational effort up front, it can be rolled out systematically, machine by machine. In these times of diminishing technical skills and experience across industry, the alternative really isn’t much of an option. MT

Ken Bannister is managing partner and principal consultant for EngTech Industries Inc., (Innerkip, Ontario), an asset management-consulting firm specializing in the implementation of certifiable ISO 55001 lubrication-management programs and asset management systems. For further details, phone 519-469-9173, or email

Quick Tips for Successful Checklists

As I wrote in a March 2013 “Don’t Procrastinate, Innovate” column for Maintenance Technology, Dr. Atul Gawande’s 2009 book The Checklist Manifesto–How to Get Things Right, was, and still is, an intriguing read. It offers some invaluable insight for those in the reliability and maintenance field.

In his book, Gawande details how he pioneered the “Safe Surgical Checklist,” based on a model that the aviation industry adopted following the infamous World War II Boeing 299 crash. That checklist has certainly stood the test of time.

According to Daniel Boorman of Boeing (Seattle)—the person charged with developing aviation checklist manuals for all of the company’s planes for 20+ years—the secret of a good one is how it’s written, starting with using simple and precise language familiar to users in the profession. Among Boorman’s other tips:

— A checklist doesn’t have to be too comprehensive to be effective (usually between five and nine items).

— Well-designed checklists fit the flow of the specific work, encourage users to read each point out loud, and help them detect potential failures before they occur.

— A successful checklist ideally fits on one page, is free of unnecessary color and clutter, and uses upper and lower case in a sans-serif font such as Helvetica.

learnmore2“Power from Making Lists and Checking Them Twice”

“Safe Surgical Checklist” on the World Health Organization website


8:17 pm
August 9, 2016
Print Friendly

Practical Oil Analysis: Why and What For?

Simply hoping your lubricants are operating  within their protective-specification limits doesn’t make it so.

By Ken Bannister, MEch Eng (UK) CMRP, MLE, Contributing Editor

Lubricants are designed and chosen to perform as finite and perishable, integral components of host machines. Rarely, if ever, will a lubricant be employed in identical application and environmental conditions. Enter oil-analysis testing.

Why we test

The uniqueness of lubricants reflects how and when they must be tested, maintained (filtered and temperature controlled), and changed out. Stresses and influences such as load-induced shear stress, thermal degradation, various types of contamination, and wear-metal-catalyzing alter and prematurely degrade lubricant properties.

Oil is made up of a base oil and an additive package that’s designed to combat ambient and working environmental stresses/influences and deliver reasonable lubricant life. Outside stresses produce an array of detrimental effects, including oxidation, polymerization, cracking hydrolysis, and evaporation that manifest as thickening or dilution of viscosity, acid buildup, and sludge. Additionally, when oil loses some of its protective ability, its host bearings can come into contact with one another and release metal-wear particles into the lubricant, which then act as a bearing-attacking abrasive material (three-body abrasion).

These effects and conditions are why we analyze oil. This testing is how we ensure lubricants are serviceable and bearing surfaces are protected.

Screen Shot 2016-08-09 at 3.15.01 PMWhat we test for

Oil analysis is analogous to a blood test wherein a single, properly extracted fluid sample is used for a variety of diagnostics that indicate machine and lubricant conditions. To ensure an accurate interpretation of results every time—reliable ones suitable for trending and historical analysis—samples must be collected in a consistent manner and sent to the same laboratory for testing on the same equipment.

The lab will also require a virgin sample of any lubricant to be tested. This sample is used to document baseline measurements of base-oil type, additive-package levels (metals and chemicals), cleanliness level (dirt-contamination level), and viscosity and acidity. A set of initial samples detailing how and where each was taken will also be required for each machine.

Good laboratories also document an operational profile for each machine tested. Based on it, they can recommend additional beneficial testing, e.g., a Karl Fischer water-contamination test for a food plant with daily machine wash downs; tests for soot and glycol in mobile equipment and generator engines; or ferrographic analysis of metal particulates to determine specifically how a bearing is failing.

Basic oil analysis concentrates primarily on fluid property and fluid contamination.

Fluid-property testing

In analyzing fluid properties, laboratories typically look at viscosity, acidity, and additive elements—the “big three” characteristics that make oils unique—and which, through their changes in service, can tell us how to better maintain our lubricants.

Viscosity. The viscosity rating of new oil is typically measured in centistokes (cSt), i.e., oil’s kinematic viscosity depicting measured resistance to flow and shear by the force of gravity. As oil thickens or dilutes over time, however, its specific gravity changes, leading to errors in gravity-based tests. A more consistent measurement is achieved by checking for the absolute viscosity rating depicting oil’s resistance to flow and shear through measurement of its internal friction. Because absolute viscosity is measured by multiplying kinematic viscosity by the actual specific gravity, it’s an accurate, error-free trending method of choice for most laboratories. To understand which tests your lab used, note the measurement scales: kinematic viscosity (good test) is measured in centistokes (cSt), absolute viscosity (best test) in centipoise (cPs).

Given oil’s many variables, it’s best to work with a laboratory that’s experienced in setting up caution and critical limits for your industry type. Most labs typically start with a clearly defined set of viscosity limits of –10% CL (critical lower), –5% CaL (caution lower), +5% CaU (caution upper), and +10% CU (critical upper) for industrial oils. In more severe environments, the CaU and CU limits can be reduced to +4% and +8%, respectively. For oils with viscosity improvers, the lower limits are usually doubled.

Thickened, more viscous oil points to oxidation (depleted additives), air entrainment, and/or contamination. Thinner, less viscous oil points to a wrong substitution or fuel dilution. 

Acidity. The acid number, or AN, is a measurement of the acid concentration in the oil, not the acid strength, and is greatly affected by the presence of water within the oil. Most oils start with an AN of less than 2.

Setting limits for acidity isn’t as easy as setting those for viscosity. The caution and critical limits are dependent on the type of additive package used in the oil. Most standard mineral oils are considered corrosive over AN 4, whereas AW (anti-wear) or R&O (rust-and-oxidation-inhibited) oils are considered critical well below AN 3. Working with your oil supplier’s engineering department and/or a reputable oil lab with experience in your industry is the best way to set up meaningful acceptable limits for your environment.

A change in oil’s acidity (TAN) points to base oil deterioration, oxidization, and contamination.

Additive Elements. The table on p. 38 lists the typical standard elements for which oil analysis tests. Since some perform in multiple functions, they must be checked against a virgin sample and operational profile to determine if they are beneficial or detrimental when their values are compared with known values.

Fluid-contamination testing

Dirt, water, and chemical contaminants are highly destructive to lubricants. For the most part, however, they’re easily avoidable.

Solids contamination. Testing for solid contaminants involves particle counting based on ISO Cleanliness Code ISO 4406:1999. One method requires a technician to use a light microscope and manually count the number of particulates in a 100-ml oil sample that are >4 microns, >6 microns, and >14 microns in size. The total is then compared with the ISO 4406 cleanliness chart to derive a three-number ISO cleanliness rating. An alternative, automated approach leverages sensors and light-absorption principles to detect and count particles. With this method, ISO 4406 calls for three sample size counts at >4 microns, >6 microns, and >14 microns.

Water contamination. Water in oil promotes rust and corrosion—and, in a dissolved state, will accelerate oxidation. Water can be introduced as contamination through wash downs of equipment or leakage. Prevention measures include coalescing filters/breathers and physical waterproof protection around areas susceptible to moisture ingression.

Testing for water contamination typically involves the Karl Fischer moisture titration method: A vaporized oil sample is carried by oxygen-free nitrogen into a reaction-vessel containing methanol. Trapped moisture is titrated to an end point with a reagent to establish the presence of water in parts per million.

Beyond why and what

The procedures discussed here represent the major components in standard, inexpensive oil-analysis testing. In most cases, they’ll indicate when to change oil, based on condition. Unusual or inconclusive findings should generate more-specific testing that can lead to positive outcomes for both lubricant and machine. MT

Ken Bannister is managing partner and principal consultant for EngTech Industries Inc., Innerkip, Ontario, an asset management-consulting firm now specializing in the implementation of certifiable ISO 55001 lubrication-management programs and asset-management systems. For further details, telephone 519-469-9173, or email



9:00 am
July 15, 2016
Print Friendly

Battery-Driven Grease Gun

1607mtprod20pTLGB 20 battery-driven grease gun has an integrated grease meter to dispense the proper amount of lubricant for an application. A rechargeable 20-V lithium battery delivers extended service life. A built-in light illuminates the work area. The gun dispenses as many as 15 grease cartridges/battery charge and has two flow rates adjustable for specific application. Pressures to 10,000 psi can be achieved.

Lansdale, PA


4:05 pm
July 11, 2016
Print Friendly

Use These Steps to Introduce New Lubes

Part of of the process equipment of the mechanism close-up.

The process of introducing new lubricants to your plant calls for great care, communication, and attention to details.

By Ken Bannister, MEch Eng (UK), CMRP, MLE, Contributing Editor

New lubricants are introduced into plant environments every day. There can be several reasons behind this type of move: a purchase-cost-reduction or purchase-bid program; new equipment for which the manufacturer’s specified lubricant isn’t currently stocked on site; promotion of a specialty lubricant as a way to solve a specific equipment problem; or some form of lubrication-management initiative. Unfortunately, most new lubricants are introduced in an informal, non-controlled manner with little or no communication between the reliability/maintenance, engineering and/or purchasing departments—or much consideration of the impact that the new product can, and will, have on the maintenance and operation of the physical plant.

With no structured lubrication program in place, the mixing of lubricants—greases and oils—can be endemic. This situation is a major cause of lubricant and premature bearing failure due to the cross contamination of base oils and/or additive packages. For example, a product containing acidic additives added to one containing base or alkaline additives can very quickly neutralize a lubricant’s effectiveness and protection ability, often resulting in catastrophic failure. Anyone who has toiled over implementing a lubrication-management program knows that allowing a new lubricant into a plant environment must be formalized and controlled. This process is not necessarily easy.

An essential part of any quality lubrication-management program is an initial consolidation process that reviews and documents all current lubricant products on site, where they are used, and how they are stored, handled, transferred, and delivered to minimize contamination of lubricants and bearings. This essential engineering process, performed by the lubricant manufacturer, looks for opportunities where more modern, often less expensive, products can be standardized for use across the site to replace all redundant, unsafe, and out-of-date oils and greases, and minimize the number required to operate the plant safely and effectively. In many facilities, the number of lubricants stocked and used after consolidation can be less than half the original count. For this standardization to begin, the consolidation process must determine all possible lubricant compatibility issues and propose suitable engineered lubricant change-out/flushing operating procedures.

Once a list of new lubricants is finalized, the plant must take the following steps to formalize the program:

  1. Prepare a formal approved-lubricant list for purchasing-department personnel and set up a blanket purchase-order for the approved products.
  2. Inform all affected stakeholders of the impending change(s) to an approved-lubricant list.
  3. Remove all non-approved lubricant stock from the plant.
  4. Develop a stock rotation/control procedure for all approved lubricants.
  5. Obtain up-to-date MSDS sheets for all approved lubricants and remove all non-approved MSDS sheets.
  6. Purchase dedicated (color-coded) storage and transfer equipment for all approved lubricants.
  7. Purchase labels for all approved lubricant reservoirs.
  8. Change all lubrication filters.
  9. Develop a lubricant change-out flushing procedure and systematically change out all non-approved lubricants in all machine reservoirs; re-label reservoirs.   
  10. Update lubricant-inventory-control software with lube specification, supplier, manufacturer, code numbers, min/max levels, and inventory-turn rate.
  11. Update affected preventive-maintenance (PM) job tasks in the CMMS (computerized maintenance-management system) to reflect new lubricant changes.
  12. Update any recommended changes to PM schedules in the CMMS.
  13. Update equipment manuals to reflect new lubricant changes.
  14. Update Bill of Materials (BOMs) in the CMMS.
  15. Update changes to the lubricant disposal procedure.
  16. Update any changes to reporting requirements in the CMMS.
  17. Perform staff training for change awareness, product handling and safety issues, and product disposal.
  18. Inform production.
  19. Develop a new-lubricant trial/approval procedure for any non-approved oil or grease introduced into the plant.

After a consolidation program has been implemented, only approved lubricants can be brought into the plant for regular use. This policy, however, does not exclude introduction of a new lubricant into the plant on a trial basis. Should a new lubricant trial be required, a formal request must be made to the reliability/maintenance group by completing a “Lubricant Trial Request Form.” That group, in turn, will oversee the lubricant trial.

Typical trial-request-form attributes

A good trial-request form should have enough relevant information to enable the trial to take place and collect enough relevant data from which a yes/no approval decision can be made upon the trial’s completion. The form must elicit answers to all of the W5 questions—Who, What, When, Where, Why, and How—and document the test results. (This translates to seven sections total.)

  1. Who? Contains the name, title, department, and contact details of the trial requestor, as well as details of the lubricant supplier and manufacturer name and primary contact persons. It also provides the person(s), title(s), and department performing the trial.
  2. What? Contains the trial lubricant specification data that will include its name, oil or grease, base-oil type, viscosity, VI (viscosity index) rating, additives, virgin-oil sample datasheet #/attachment, MSDS sheet, expected compatibility issues with other approved products, seals, and production raw materials.
  3. When? Contains the expected trial duration, along with commencement and completion dates.
  4. Where? Contains equipment type or specific
    equipment number of the machine on which the lubricant is to be tested.
  5. Why? Details reasons for the lubricant trial, in what way it will benefit the trial equipment and expected results, such as temperature reduction, energy reduction, life-increase expectation of lubricant and/or bearing surfaces and sustainability, and what bearing-failure reduction the trial is expected to accomplish.
  6. How? Documents the actual test procedure specifics, including lubricant disposal after the test and the conditions to be tested, i.e., amperage draw, temperature of bearings/lubricant, and lubrication-system pressure (cold and hot running).
  7. Results? Details findings data and conclusions relevant to the test, including before and after data readings, photos, infrared images, vibration readings, risk/benefit analysis, a return-on-investment statement, and a recommendation for approving or not approving the lubricant for purchase and use in the plant.

Be sure to alert plant personnel whenever a lubricant trial is being performed. Communicate this fact by placing a placard or sign on the equipment that states “Machine Under Test with New [insert name] Lubricant.” (Specifically call out the name of the lubricant). Make operators aware of such tests and notify maintenance personnel of anything unusual regarding noise, vibration, smell, and leakage during the procedure.

Before proceeding with any lubricant trial, always consult with manufacturer(s) of your approved lubricants to establish:

  • whether they have already performed a compatibility test of the trial product with your approved lubricants.
  • if, as suppliers of your approved lubricant, they have a comparable product available to test, or that you may already stock. You should also contact trial-lubricant manufacturer personnel and ask if they have conducted any compatibility tests with your approved lubricants. If no testing has taken place, you can ask if any party is willing to test compatibility on your behalf.
  • In the case of new oils, when no compatibility information is available or forthcoming—and you are unable to establish compatibility—you can perform your own testing, as follows:
  • Take samples of both lubricants and blend three mixed samples in ratios of 50:50, 90:10, and 10:90.
  • Send the three mixed samples to an oil-analysis laboratory and have them tested for filterability, sediment, and color/clarity. Also ask the lab to perform an RPVOT (rotating pressure-vessel oxidization test) to determine the new lubricant’s resistance to oxidation, and a storage-stability comparison.
  • For accurate results, tests should be performed three times and the results normalized.
  • Ask the lab to assist you in determining any cross-contamination risk.
  • Share the test results with the manufacturer of the new lubricant and ask for a change-out/flush procedure.

Note that an RPVOT can be quite expensive to perform. Thus, in the case of non-critical equipment, and if you won’t need to complete a large number of lubricant changeovers, you could forego the RPVOT and simply ask the manufacturer of a new lubricant to recommend a neutral flushing oil.

In the case of new greases, similar steps are followed. The process starts by blending mixed samples of new and existing greases in 75:25 and 25:75 ratios, and sending them to an oil-analysis lab to test for consistency, dropping point, and shear stability.

If a new-lubricant trial is deemed successful, and none of your existing approved lubricants can perform the required job, the new product can be accepted as an “approved” lubricant. The acceptance process, however, calls for the reliability/maintenance group to once again go through the appropriate steps listed above to formally integrate the new lubricant into your plant. MT

Ken Bannister is managing partner and principal consultant for EngTech Industries Inc., (Innerkip, Ontario, Canada), an asset management-consulting firm now specializing in the implementation of certifiable ISO 55001 lubrication-management programs and asset-management systems. For further details, telephone (519) 469-9173, or email


8:03 pm
July 7, 2016
Print Friendly

Industrial Growth Partners Acquires Des-Case Parent

Screen Shot 2016-07-07 at 2.15.47 PMIndustrial Growth Partners (IGP), a San Francisco-based private equity firm, has acquired the parent company of  lubricant-contamination-control leader Des-Case Corp. (Goodlettesville, TN).

With a 20-yr. history in the industrial sector, and $2.2 billion in capital raised since inception, IGP has extensive experience building global manufacturing businesses. According to the company, it concentrates  on leading niche manufacturers of engineered products used in critical applications, and partners with their management teams to pursue strategic initiatives focused on achieving long-term shareholder value.

Screen Shot 2016-07-07 at 2.19.40 PMFounded in 1983 when it brought the first desiccant breather to market, Des-Case now provides an array of  fluid-cleanliness products, services, and training that improve equipment reliability and extend lubricant life in industrial plants around the globe. It, in fact, has enjoyed the growth-opportunity benefits of private-equity investments since 2013, when it was acquired by Pfingsten Partners L.L.C.

Screen Shot 2016-07-07 at 2.20.35 PMIn 2014, Des-Case announced its own acquisition of the visual-oil-analysis line of ESCO Products Inc., the well-known, family-owned, Houston-based manufacturer of various  fluid-monitoring technologies and distributor of Copaltite and Dow Corning products. The acquired portfolio included ESCO’s 3-D BullsEye Viewport, oil sight glasses, indicators and level monitors.

“I am honored and excited to be a part of writing the next chapter in the Des-Case growth story alongside our valued customers, partners and investors,” noted company president and CEO Brian Gleason. “IGP has over two decades of experience investing in the industrial sector with a proven track record of building world-class global businesses. We are looking forward to the partnership.”

Other than the report that Des-Case’s management team has retained a substantial ownership stake in the company, terms of the July 6, 2016 transaction haven’t been disclosed.

For more information on Des-Case, CLICK HERE.

To learn more about Industrial Growth Partners, CLICK HERE.


9:00 am
July 7, 2016
Print Friendly

Lithium Grease

CorrLube VpCI EP grease is lithium complex grease formulated with premium quality, severely hydro treated base stock. Said to provide excellent resistance to oxidation and with high temperature stability, it is suitable for operating and lay-up conditions. The formula is designed with properties that protect against salt water, brine, H2S, HC1, and other corrosive agents. It also incorporates Vapor phase Corrosion Inhibitors (VpCI) for areas not in direct contact with the grease. The grease remains effective in extreme operating conditions such as high temperature, high pressure, and shock loading, and aids in the suspension of solid additives such as graphite, molybdenum, and disulfide. Thicker film consistency allows it to operate on worn parts.
Cortec Corp.
St. Paul, MN


9:00 am
June 28, 2016
Print Friendly

Net-Oil Measurement

Foxboro NOCT60A net-oil Coriolis transmitter is an all-in-one meter and flow computer that provides a single-box solution for net-oil measurement applications. Consisting of a CFT51 Coriolis transmitter and a CFS10, CFS20, or CFS25 mass flow tube, the unit integrates digital technology with a built-in flow computer equipped with Realflo software to measure net-oil volumes on the liquid leg of two-phase separators or the oil leg of three-phase separators. The transmitter is said to solve common problems associated with the measurement of production fluids, including incomplete separation and gas carry-under, and of detecting adverse conditions such as fluid erosion, corrosion, and flowtube coating.
Schneider Electric
Foxboro, MA