Archive | Preventive Maintenance

16

4:15 pm
May 15, 2017
Print Friendly

Remote Monitoring Empowers Solar Contractor

Solar-power systems that take the sting out of energy costs are effectively monitored with a state-of-the-art tool and cloud-based data system.

1705fsolfocus01p

The NuEra Energy Designs company in Newport Beach, CA, specializes in designing, installing, and monitoring solar-powered systems. Remote monitoring is handled by the Fluke 3540 FC monitor and Fluke Connect cloud-based data-analysis system.

NuEra Energy Designs is a Newport Beach, CA-based contracting firm that works with industrial and commercial businesses to improve their energy efficiency and to find ways to save money, typically by designing and installing solar systems and associated electrical equipment.

NuEra’s work starts with load studies and extensive evaluation of building-power systems and equipment. If appropriate, solar solutions and backup and demand-control systems are designed and built based on those studies.

A key selling point of NuEra services to customers is a welcome,  often near-immediate return on investment as a result of reduced energy bills, depreciation, and the potential to obtain energy and tax credits. In some cases, installation of solar systems and electrical upgrades delivers net revenue to clients who are then able to put power back into the energy grid.

Contractor, problem solver

Ken Dodds, the company owner and chief energy analyst, has established himself over the years as an electronics and electricity problem solver. He became a California-licensed contractor in the 1970s. His early projects were delivering power to remote ranches and other installations in the Mojave Desert, where it can be cost prohibitive to run conventional electrical lines. He has designed and built portable and off-grid solar systems to operate well pumps, power ranch homes, and illuminate street lights on remote military bases, complete with battery or multi-generator backup systems.

Though he started NuEra in Arizona more than six years ago, Dodds does the bulk of his business in California where the high cost of power helps makes solar systems a legitimate option for commercial customers. Add in energy savings through lighting, HVAC, and other electrical upgrades and the cost savings become substantial.

“One manufacturing-facility customer went from paying what would be $23,000 per year at today’s rates for energy (their old rate was a bit less), to getting $90 in return from the utility less than two years later,” Dodds stated.

The Fluke 3540 FC monitor provides real-time data capture.

The Fluke 3540 FC monitor provides real-time data capture.

Monitoring and documenting

To efficiently document studies and identify such savings, Dodds uses the Fluke 3540 FC three-phase power monitor (Fluke Corp., Everett, WA, fluke.com) to track three-phase systems at his client’s plants. The monitor takes power analysis and logging to a new level by putting the data stream onto data servers. Dodds is then able to remotely read and analyze these power measurements, depending on the configuration:

• current (A)
• voltage (V)
• frequency (Hz)
• power (W)
• apparent power (VA)
• non-active power (var)
• power factor (PF)
• total harmonic distortion voltage (%)
• total harmonic distortion current (%)
• harmonic content current (A).

The information is streamed from the Fluke 3540 FC to secure cloud servers where the measurements can be analyzed with the Fluke Connect mobile app or Fluke Condition Monitoring desktop software. Graphs show trends and fluctuations during the monitoring period. Dodds sets up alarms to indicate when the power is outside certain thresholds.

Monitoring the data gives Dodds a signature of the building, from the main feeders and on into critical pieces of equipment. “First, it lets us know where best to attack the building to make changes, or see if we can fix something upfront,” he said. “We look at kilowatts, we monitor the voltage, we look at use times. We can tell if the loading is off on different legs of the three phase, important because if it’s not uniform, you’re going to have issues.”

NuEra's Ken Dodds uses the Fluke 3540 FC three-phase power monitor to track three-phase systems at his client’s plants. The monitor sends the data stream to cloud-based servers for analysis.

NuEra’s Ken Dodds uses the Fluke 3540 FC three-phase power monitor to track three-phase systems at his client’s plants. The monitor sends the data stream to cloud-based servers for analysis.

Easily shared, reliable data

The data is useful to a wide range of workers. “The power-monitoring system not only educates our electricians to a problem,” Dodds stated. “If I’m worried about a motor or another big expensive piece of equipment, I can see trend graphs on what’s happening with the machine on my tablet or phone.”

Dodds connected a Fluke 3540 FC at one manufacturing plant recently so he could watch, in real time, the power going into the building, as well as the power going back to the grid from the solar system. “This is really valuable to me, especially for knowing what happened to the power I sent back to the utility. That is what they are paying my customer for so it’s verifying that,” he explained. “If my data shows I’m sending 15 kilowatts and the utility only shows 5 kilowatts, I can question that and we can figure what’s going on.”

Recently, the system allowed him to identify energy waste. “I discovered the other day a compressor was kicking on in the middle of the night. I called the building supervisor to see if anyone was working at that time. He said no, so we knew having the compressor on was a waste of money. You are paying for air to go leak around the plant. So these are some of the types of savings we find.”

The 3540 also provides power-factor data, a measure of real and apparent power, which can be a reason for the demand charges being high. “The convenience of monitoring energy consumption from anywhere is huge,” Dodds said. “I can use it in the car, when I’m on a roof or in the office or at the coffee shop or at home, wherever. My phone goes whoop whoop, when an alarm goes off. I check and I know what an asset is doing. It only takes a second to look at and read it. From anywhere, you can answer a text or send an e-mail. It’s exciting to see it develop.” MT

For more about the Fluke 3540 FC monitor, supporting software, and cloud-based data handling, visit fluke.com.

126

2:22 pm
May 15, 2017
Print Friendly

Facilities vs. Factory Maintenance: Is There a Difference?

1705ffacilitymain

The common denominators boil down to assurance of reliable equipment assets and successful delivery of product.

By Jeffrey S. Nevenhoven, Life Cycle Engineering (LCE)

Among reliability and maintenance (R&M) professionals, there are many opinions about the universal or, more precisely, not-so-universal nature of maintenance practices. We’ve all heard statements along the lines of “this organization is different,” “we’re not like them,” or “those best practices won’t work or fit here.” One perception shared by many working in the R&M trenches is that maintenance in a batch-processing manufacturing environment is considerably different from maintenance in a continuous-flow operation. Another common perception is that maintenance principles and practices within the world of non-manufacturing facilities differ greatly from those in a manufacturing organization. But do they really?

At first glance, those strongly held beliefs might seem justifiable. Below the surface, however, the inner workings of any organization are quite similar when it comes to R&M requirements. Why, then, do so many people contend that reliability and maintenance are handled differently within distinct organization types? A number of factors drive those beliefs, including operating environment, regulatory requirements, organizational structure, leadership style, business priorities, expectations, and past practice. On top of that, many influences figure into the perception that something will or will not work within a specific organization.

In reality, physical assets are void of emotion and thought. Regardless of location or organization type, such assets need to be operated and maintained appropriately and, in turn, be available to deliver reliable service, as required. Without reliability, business risks increase, asset-performance levels decrease, and costs escalate.

So different, but so similar

Assets, systems, procedures, departments, and workers exist to produce a product or service, regardless of organization type. In the healthcare sector, the product is patient experience. Within amusement, entertainment, and sports markets, it is fan/customer experience. Within the travel industry, it’s passenger experience. Within the education system, the deliverable is student experience. And, within manufacturing, the product is ultimately consumer experience.

Consider, for example, two starkly different environments: a healthcare operation and a refinery. On the exterior, a healthcare organization, such as a hospital, looks very different from an oil-and-gas refinery. Hospitals consist, primarily, of aesthetically appealing buildings and grounds while oil refineries consist of tanks, piping, and other industrial-looking structures. As we enter these operations, noticeable differences still exist.

Inside the hospital, we observe doctors, nurses, patients, and other healthcare professionals at work. At the refinery, we see operators, crafts, engineers, and other industry specialists performing their duties. One facility encompasses exam, emergency, and operating rooms, labs, registration desks, and waiting areas, while the other encompasses control rooms, repair facilities, material storage areas, and production equipment and environments.

Once we look beyond the exterior differences, though, similarities become more noticeable. Despite one organization focusing on patient health and the other on refining crude oil, both share a long list of common business practices, have comparable organizational structures, and utilize physical assets. Both are delivering a product, and both require reliable, well-maintained equipment to do it.

Healthcare operations, such as hospitals, fall under the category of facilities maintenance, or facility management, while refineries in the oil-and-gas industry fall under the factory-maintenance category. Despite the differences in form, fit, and function, these operations are very much alike when it comes to sustaining maintenance requirements. After all, the maintenance processes and practices to ensure that the HVAC system in a hospital is operational and reliable are similar to the efforts required to ensure the reliability and operation of a refinery’s cooling system.

The HVAC system in a hospital’s operating room requires the utmost care and reliability. Temperatures and airflow must be regulated within specific parameters throughout the entire surgical procedure to help prevent infection and promote healing of a patient. If the HVAC system is not working reliably, entire operating suites can be shut down, resulting in canceled surgeries, reallocation of patients to other hospitals, and even possible litigation and damage to reputation.

The process of refining crude oil into consumer fuels and other products entails several chemical-process steps that generate enormous amounts of heat and pressure. The cooling-water system, which is associated with a cooling tower, helps control these extreme temperatures and pressures by transferring heat from hot process fluids to the cooling system. Much like the HVAC system, the cooling tower is a critical asset that requires reliable operation. Unless it performs reliably, product delivery, product quality, energy consumption, the environment, and employee safety can be severely compromised.

Have the parallels between these different types of organizations become clearer?

Maintenance 101

A hospital HVAC system and a refinery cooling tower incorporate mechanical, electronic-control, transmission, and power systems, all of which need to be maintained properly. To achieve this, facility-maintenance departments and their factory-maintenance counterparts need to ensure that the following foundational methods are established and functioning well. Think of these methods as “focusing on the fundamentals” or “the blocking and tackling” of maintenance:

Asset-care program. Most assets within any organization require some level of preventive care. This includes routine cleaning, lubrication, inspection, and adjustment to maintain reliable operation which invariably includes time-based and condition-based maintenance. This should all be documented and monitored through the maintenance strategy program.

Work-management system. The work-management system encompasses the framework, infrastructure, processes, and resources needed to manage asset-care activities, reactive or proactive. It provides the means to identify, prioritize, perform, document, and report work.

Planning and scheduling function. The planning and scheduling function defines the what, how, who, and when for proactive-maintenance work activities. The collective effort of planning and scheduling aims to minimize asset downtime, improve workforce efficiency and, reduce maintenance-induced failures.

Stores (MRO) inventory-management function. To effectively fulfill its mission, the maintenance function requires reliable and prompt material support. A proficiently managed MRO (maintenance, repair, and operations) inventory storeroom contributes to improved equipment reliability, workforce efficiency, and cost control.

Reliability engineering. The reliability engineering function is responsible for driving out sources of repetitive failure. Its mission is to provide leadership and technical expertise required to achieve and sustain optimum reliability, maintainability, useful life, and life-cycle cost for an organization’s assets.

Computerized maintenance-management system (CMMS). Proactive-maintenance organizations use data to effectively handle work activities, report performance, track costs, and enable continuous improvement efforts. The CMMS automates these processes, captures data, and provides information required to enable resource productivity and asset reliability.

Universal application

Regardless of where an asset resides, reliability depends on core reliability and maintenance fundamentals that span all industries and organizational types. Whatever the assets may be, i.e., motors, pumps, compressors, robots, conveyors, boilers, elevators, escalators, pelletizers, utilities, mobile equipment, fire-suppression systems, rotary-tablet presses, chillers, rolling mills, roadways, buildings, you name it, all require specific amounts of downtime for proactive preventive- and predictive-maintenance activities, including, but not limited to, replacement of wear parts, rebuilds, upgrades, and other improvements. Levels of maintenance may vary by organization type, but the fundamental requirement for it is universal. MT

A senior consultant with Life Cycle Engineering, Charleston, SC, Jeff Nevenhoven helps clients align organizational systems, structures, and leadership styles with business goals. Contact him at jnevenhoven@LCE.com.


learnmore2“Alignment Connects Individuals to Organization Objectives”

“Managing Your Value Stream”

“Get to the Root of the Cause”

“Profiles Reveal Reliability Trends”

115

2:55 pm
April 18, 2017
Print Friendly

On The Floor: Management Rapport? Thumbs Up and Down

Mechanical and electrical plant roomsBy Jane Alexander, Managing Editor

For some reason, the following question about management rapport really kicked MT Reader Panelists into high gear this month. Lots of them (more than usual) wanted to express their opinions (some in far more detail than they typically provide). The result is that we can’t include all responses on these two pages. 

Q: What was the state of rapport between their sites’ plant-floor reliability and/or maintenance teams (or their clients’/customers’ teams) and upper management, and why?

Here are a few of the responses we received. As usual, they’ve been edited for clarity and brevity.

Industry Consultant, West…
Management rapport [with maintenance and reliability teams] is one of the main indicators I use when working at a new [client] site. If there’s tension between these departments, there will be communication breakdowns—virtually every time.  Performance will suffer greatly, and each group will blame the others.

In general, I find a good, strong, open, and honest working relationship in less than 30% of my clients’ operations.  If I can resolve issues between the groups, and improve relationships, the parts of the maintenance and reliability puzzle fall into place rather easily. In the age of e-mail, texting, and voicemail, however, it’s much easier for silos to exist and not handle issues face-to-face.  In my opinion, it seems to be getting easier to let site relationships erode rather than repair them.

Maintenance Technician, Discrete Mfg, North America…
Not the greatest here (always a struggle because upper management is constantly looking to cut corners). They call it risk management, yet when something goes wrong, they panic. Some of our older equipment has been paid for many times over. Now, though, we’re into a stage where it’s hard to get parts for this equipment. We [our team] really tries to stress the importance of preventive maintenance (PMs) and taking care of things, as in “if you take care of your stuff, your stuff will take care of you.” But it becomes frustrating when that idea seems to fall on deaf ears and they [management] seem to dodge another bullet. (This opinion is based on personal experience; I’ve been working in this plant for many years.)

Industry Supplier, Southeast…
With regard to my customers, management rapport, in most cases, is still not very good. I work with a lot of plants where plant-floor staff need help, but must get upper management to buy in. Most preventive-maintenance (PM) personnel don’t have the knowledge to make their case. When I’m able to meet with both sides at the table and pitch ROI (return on investment), it seems that they begin to understand each other better, i.e., that the ROI for Management is dollars and the ROI of PM teams is reduced failures and workload.

Reliability Specialist, Power Sector, Midwest…
Our team has an excellent rapport with all levels of the organization.  The secret to good rapport is to not only talk the talk, but to walk the talk. The site’s PdM/PM program mission is to use our knowledge and appropriate technologies on the facility’s assets to provide the operating group safe, efficient, and reliable equipment.  In the same manner, we are to use our knowledge and available technologies to safely and effectively reduce the facility’s operating and maintenance costs.

Industry Supplier, Midwest…
It’s ugly (management rapport, that is)! Many of my plant-floor customers have lost budgets and been reduced to performing reactive work, as opposed to proactive maintenance. They’re dealing with plants that are already in bad shape and disrepair, and answering to management that still wants to run full production. They have no inventories, no spares, and no orders for items with extremely long lead times. It’s not a pretty picture. One ray of hope [a slight improvement] is that site management is now being forced to go to corporate for monies and also discuss why equipment was allowed to go so long without repair. The overall situation, though, leads to pain and agony for those having to do work, that, if it had been done when needed, would have been a simple fix, not a catastrophic fix.  

Industry Consultant, North America…
There’s no guarantee that upper management has a solid understanding of reliability excellence. This is especially true if no executive-level stakeholder exists. Quite often, the focus from the top is solely on cost management (not on failure prevention or defect elimination.) In my experience as a consultant, a common complaint at the working level has focused on incoherent, ongoing initiatives that aren’t solidly linked to goals. This issue could be resolved if long-range plans were created based, say, on ranking of each initiative by priority and benefit and then stretching them out over a period of time. Leadership should encourage these types of plans for excellence, and involve plant personnel in their definition.

Maintenance Leader, Discrete Mfg, Midwest…
As noted in some of my past Reader Panel responses, maintenance used to be the redheaded stepchild at our facility. The problem started with the fact that plant managers and senior managers seemed to come and go [change] frequently. Because of this, “flavor of the month” programs were the norm. This changed with the arrival of an outside consulting firm. When upper management listened to suggestions and our plant-floor personnel saw that their ideas were listened to, maintenance took ownership. This made a big difference with proactive versus reactive work. We’re now getting our preventive maintenance work done as well. Things are looking good.

Reliability Engineering Leader, Process Mfg, South…
If I had been asked this question a couple of years ago, I would have characterized the relationship between management and plant-floor teams as indifferent. It wasn’t adversarial, but more a matter of management viewing maintenance as a necessary evil than a competitive advantage.  That has changed significantly. Last year, leadership announced PM Completion Rate (with a target of 95%) as one of the top metrics for the company. That was a real game changer. Suddenly, everybody was interested in preventive maintenance—it had become part of their personal-performance expectations. Respect for the importance of scheduled maintenance compliance made a dramatic shift, and we exceeded our PM-completion target.  This coming year, unscheduled asset downtime is being added to the top company metrics and will be reviewed on a monthly basis by executive management. This is a clear example of how leadership from the top can really drive change. 

Industry Consultant, International
In answer to your question, this situation [management rapport problems] is brought on by local company politics, lack of training, and basic mismanagement among, other things.

While I’ve worked with various clients, including some where severe adversarial relationships existed between Maintenance and Production/ Upper Management, by coaching ALL responsible parties that state of the art reliability and maintenance saves money, increases OEE (overall equipment effectiveness), improves uptime, and increases productivity, etc. I have convinced maintenance and top management that maintenance/reliability is a business partner NOT a “ we break it/you fix it” stepchild.

After training of top-level maintenance, production and sometimes even general management personnel by professionals in reliability and maintenance management, common goals are identified and cooperation is much improved. Accountants watch the bottom line weighing these additional consultant/training costs against expense reductions and production improvements. Results are that teamwork builds and floor-operations to staff-level relationships smooth out.

“Equipment Ownership,” in selected cases, brings hourly production and maintenance crafts together and reinforces the hourly–personnel through management relationship. Although this has, at times raised, the eyebrows of union officers, they usually go along when the benefits to all are obvious.

Yes, I have seen too many operations where maintenance and production departments, which usually have the ear of top management, DO NOT have a smooth relationship. However, with the proper training and education of all concerned, this can usually be much improve to the economic and management benefit of all.

Plant Engineer, Institutional Facilities, Midwest
With regard to management rapport, for several months, maintenance (trades) forepersons at our institution have had to attend not only new-construction meetings, but even small-project meetings. The idea is that we (Maintenance) can add our concerns before, during, and after projects are completed. The problem with all this is how much time it takes. With so many projects and associated meetings [at our site] and the number of normal maintenance-type meetings we have, we almost always have at least one supervisor sitting in meetings 30 to 40 hours per week. Work for anybody attending these meetings gets pushed back and can delay repairs. It also creates more work for the people not attending.

Another problem we have is that only the person attending the meeting knows what was discussed and/or is coming up. Consequently, that individual has knowledge that other supervisors don’t. The system would work a lot better if one person could attend all the meetings and email a recap of each event so every supervisor would know where each project stands and what’s coming up, whether in his or her area/zone or not.

While most meetings cover such a wide variety of subjects that only 10% to 20% of their agendas can be devoted to individual trades, attendees must listen to everything. It would be better, if you were going to have a one-hour meeting, to break it down into four parts, i.e., plumbing, electrical, mechanical, architectural/structural. This way, a supervisor could attend only the part of the meeting during which his or her area was discussed, not the entire meeting, and, if email recaps were sent out, could still keep up with everything that transpires.

Engineer, Industry Supplier, Southeast
Management’s responsibilities are meeting production deadlines and goals while keeping operating costs to a minimum. The relationship between management and maintenance depends on how management views their maintenance program. Some management personnel look at maintenance as a cost center while others recognize it as a cost savings mechanism or in best case, the profit center. Understanding that maintenance is a part of the cost of the product being created softens the financial burden but also gives management a better perspective regarding the value their maintenance teams bring to the table.

Ours is an equipment-service operation that’s deeply involved in working with our customers to improve their PdM programs. As such we continue to invest a great deal of time educating upper management regarding the benefits of early detection of issues that will lead to premature failures as well as on-going inefficiencies. The more informed management becomes about heading off potential problems, and the tools and preventive measures available, the more they become involved with their maintenance teams. Informed managers will interact with their teams quicker and to a greater extent. Sometimes comparing the benefits of outsourcing major PdM activities is more appealing and acceptable to management personnel as it leaves their operators and technicians time to complete their daily routine assignments.

Maintenance personnel generally understand the need for planned routine maintenance. Their relationship with upper management is greatly improved when their leaders are also informed. Education is the key to improving the relationship between upper management and their maintenance teams as well as a way of improving efficiency and operational success of the facility. MT

Tip of the Month

“Add RED and GREEN colors to the face of standard pressure gauges. This allows anyone who looks at or takes readings on a single gauge (or dozens) to tell right away if a pressure is too low or too high. I’ve worked on equipment and in test labs where this little addition could have saved a lot of time and money, and helped any operator.”

Tipster: Plant Engineer, Institutional Facilities, Midwest (an MT Reader Panelist)

What about you?
Tips and tricks that you use in your work could be value-added news to other reliability and maintenance pros. Let us help you share them. Email your favorites to MTTipster@maintenancetechnology.com. Who knows? You might see your submission(s) highlighted in this space at some point. (Anyone can play. You don’t need to be an
MT Reader Panelist.)

329

4:15 pm
April 13, 2017
Print Friendly

Reliability Changes Lives

Using skilled technicians and advanced technology, Eli Lilly and Company creates life-saving medicines and devices worldwide.

By Michelle Segrest, Contributing Editor

Throughout the halls of the Indianapolis Eli Lilly and Company facility, the corporation's brand is proudly displayed. All photos courtesy of Eli Lilly and Company.

Throughout the halls of the Indianapolis Eli Lilly and Company facility, the corporation’s brand is proudly displayed. All photos courtesy of Eli Lilly and Company.

At Eli Lilly, the motivation to improve production reliability is not just something that is tracked on graphs and charts for upper management to review. In fact, for maintenance and reliability engineer Carrie Krodel, it’s personal.

Krodel, who is responsible for maintenance strategies at the Eli Lilly Indianapolis facility’s division that handles Parenteral Device Assembly and Packaging (PDAP), has a family member who uses the company’s insulin. “I come to work every day to save his life,” she said. “Each and every one of us plays a part with reliability. Whether it’s the mechanics or the operators keeping the line running, the material movers supplying the lines with the products, or the people making the crucial quality checks, everyone is a part of it. And we all know that the work we are doing is changing lives.”

The Indianapolis site covers millions of square feet with nearly 600,000 assets that must be maintained. According to Rendela Wenzel, Eli Lilly’s global plant engineering, maintenance, and reliability champion, the company produces the medicine as well as the packaging for insulin pens, cancer treatments, and many other products and devices.

For the entire Eli Lilly team—which includes a group of about 80 engineers at the Indianapolis site—the responsibility is crucial. “If we mess up, someone gets hurt,” Wenzel said. “This is a big responsibility.”

However, it’s the human element of this responsibility that inspires an exceptional level of quality.

Team, tools, training

Screen Shot 2017-04-13 at 11.03.07 AMWayne Overbey, P.E., is the manager of the Maintenance-Manufacturing Engineering Services department. He said his team of seven maintenance technicians uses three primary technologies every day to keep the machines running—vibration analysis, oil analysis, and infrared technology. With a focus on condition-based monitoring, each team member has an area of responsibility to collect and analyze vibration data. In addition to the vibration data collector, each team member carries a small infrared camera to make heat-signature images used to diagnose and troubleshoot rotating-equipment problems.

The team also uses a digital microscope that can zoom to 3500X magnification. This helps them look closely at a bearing race, cage, and rolling elements and see what caused a failure, whether structural, corrosion-based, or failed lubrication. In addition, the group has an oil laboratory that can analyze oil and grease. 

The team performs more than 7,000 measurements on more than 4,000 rotating/reciprocating machines and performs vibration analysis on those machines monthly, Wenzel stated. The level of qualified individuals is high. “Anything that is process related, we have the equipment to look at it and analyze it,” she said. “We have people with ISO 18436-2 Cat 2 and Cat 3 verifications and even one expert with an ISO18436-2 Cat 4 certification, and there are fewer than 100 people globally with that level of certification. These guys are experienced, high-level certified professionals.”

The maintenance team increased its level of performance more than five years ago when it made the strategic decision to outsource the facilities (buildings and grounds) portion of maintenance. With about 220 maintenance professionals companywide at the Indianapolis facility, this allowed the team to focus more on production and analysis rather than the facilities, Overbey said.

The team has sophisticated data-collection routes set up as PMs and also focuses heavily on maintenance training.

“We have a difficult time finding people interested in maintenance,” Overbey said. “We have a strategic program to train people that takes 18 months to 2 years. When I was growing up, being an electrician or mechanic was a fine career, but now the attitude is that you have to have a college degree to be successful. Most of our crafts people here make more than the average liberal-arts major. As we cycle out the baby boomer work force, we need to find new talent and close the gap.”

Wenzel agreed that finding qualified crafts people has been a focus that has helped Eli Lilly in its drive for reliability.

“Wayne saw the need and developed an excellent program,” she said. “Management is supportive. He is training them and then sending them to get experience while they are going to school.”

The program is responsible for hiring 24 trainees, to date, and has been able to place 18 of them in full-time positions within Lilly maintenance groups. The remaining six trainees are still in the initial stage of the program. The training also uses basic maintenance programs provided by Motion Industries and Armstrong. Last year, there were more than 30 well-attended training classes focused on equipment used at Lilly. The company wants the training to be relevant to what the maintenance technicians perform on a daily basis.

“The whole condition-based platform makes us unique,” Wenzel said. “We have all the failure-analysis competencies. It’s a one-stop shop. We provide two-to-three day courses on condition-based technologies for crafts and engineers. The whole understanding, as far as what maintenance and reliability can do, is to increase wrench time and uptime. We are all seeing an uptake in technology.”

The Indianapolis Eli Lilly facility has more than 600,000 assets that must be maintained by its experienced engineering-services team.

The Indianapolis Eli Lilly facility has more than 600,000 assets that must be maintained by its experienced engineering-services team.

Best practices

Overbey stated that his main responsibility is to help the various site-maintenance groups improve uptime by using diagnostic tools to identify root causes of lingering problems. With a focus on training paying dividends, he said the high-quality people are what make the condition-based monitoring team successful.

The team works with the site-maintenance groups to reduce unexpected failures, so increased time can be focused on preventive maintenance. “We look at our asset-replacement value as a function of our total maintenance scheme,” Wenzel said. “We look at recapitalization and make sure we are reinvesting in our facility. We keep track of where we are with proactive maintenance. Those numbers are tracked facility to facility and then rolled into a global metric.”

Vibration analysis and using infrared technology has become a central part of the department’s reliability efforts.

“These guys have taken responsibility for the failure-analysis lab and taken it on as an added-value service,” Wenzel said. “For example, if there is a failed bearing, they take it out, cut it up, and provide a report that goes back to management. If we make a call that a piece of equipment has increased vibration levels and is on the path to failure, based on the vibration data collected, getting those bearings goes a long way in getting site buy-in when the actual bearing problem can be visually observed. Most individuals are skeptical when shown the vibration waveform (squiggly lines), seeing the bearing with the anomaly is the true test of obtaining their buy in.”

“We can compete with anyone in terms of oil analysis,” Wenzel added. “We can identify particles and have switched to synthetics. For example, when oil gets dirty, it becomes acidic. Something slightly acidic can be more harmful than something that is highly acidic because it will just continue to eat away at the material and cause significant damage before you can stop it. Something slightly acidic can really tear up bearings. The FluidScan 1100 can detect that.”

Screen Shot 2017-04-13 at 11.03.19 AM

More than 80% of the oil samples are now handled internally, Wenzel said. “As we are selling all of these capabilities to the PdM team around the world, we are starting to look at some of the potential issues at other facilities to provide extra analysis with this condition-based maintenance group,” she said. “We are sharing good ideas and processes across facilities. We now have a maintenance and reliability community.”

Eli Lilly employs Good Manufacturing Practices (GMP) and the use of many chemicals requires a high level of cleanliness that is checked daily and regulated by government bodies.

Changeovers can often take weeks. “We check everything,” Wenzel said. “There is very involved and stringent criteria for how we clean a building. Regulations are a challenge, but they keep you on your toes. You don’t even notice it anymore because it becomes a part of what you do. It doesn’t faze the day-to-day thinking.”

The precision and accuracy of the facility's manufacturing equipment contributes to its product excellence.

The precision and accuracy of the facility’s manufacturing equipment contributes to its product excellence.

Operational excellence

Eli Lilly works with cross-functional teams in which maintenance, engineering, and operations are working on the overall process. Operations manager Jason Miller is responsible for running the process. Maintenance corrects the issues and performs preventive maintenance to get ahead of equipment failures and prevent unplanned downtime.

“Anytime we have an equipment failure we evaluate what happened and see what process we can put in place to get ahead of those things,” Miller said. “Line mechanics are on each shift and work with our line operators to understand and troubleshoot issues. We get ahead of issues to ensure [there is] no impact to the quality of our process.

With advanced robotics and a large amount of automation, monitoring performance and quality is key to successful operation and production, Miller stated. “Everything is captured, including downtime and rejects,” he explained. “We identify corrective actions at every morning meeting. We use the data on the line to drive improvement. The line is automated, but if there is a reject every 100 cycles, we need to take action. The robotics never stop. If you see overloads or rejects over time, this tells you about mechanical wear and other issues with the equipment. We drive data-driven decisions for maintenance.”

The preventive maintenance includes lubricating linear slides each month. When vibration is detected, adjustments are made immediately. “The machines tell us what’s going on. We just have to know how to read them,” Miller said. “We have manual and visual quality checks, but the machines also do quality checks. Reliability is critical because when patients are waiting on their medicine, the machines have to run the way they are supposed to run all the time. We have standards, and they have to be precise. This is medicine going into someone’s body. We are the last step of the process. It has to be packaged and labeled correctly, as well.”

Mike Campbell is the maintenance planner and scheduler for PDAP and has developed a system in which all preventive maintenance is performed during scheduled shutdowns.

“We develop a schedule with every piece of equipment and every scheduled PM associated with it,” Campbell said. “One line may have 50 to 60 PM work orders to perform during the week of the scheduled line shutdown. We bring in a lot of resources to do it all at once, typically requiring a day shift and a night shift.”

Advanced production technology is critical to the standard of reliability excellence.

Advanced production technology is critical to the standard of reliability excellence.

Changing lives with reliability

Wenzel said that looking at how each department interacts helps to put all the pieces of the reliability puzzle together. They have even received outside recognition of their practices in Indianapolis. In 2008, The Corporate Lubrication Technical Committee, of which Wenzel is the chair, won the ICML John Battle Award for machinery lubrication.

“It’s not only a cost piece, there is a whole asset-management piece and a whole people piece that we have to look at–not just the numbers, the metrics, the bars and charts–it’s the whole thing that makes a facility tick,” she explained. “Reliability isn’t just my job…it is everyone’s job. Every time I get into my car and turn the key, I expect it to come on. Every time I run that piece of equipment, I want it to perform the same way every time. That, to me, is reliability.”

Overbey said reliability is about being tried and true. “It’s predictable. It’s reliable every day. It’s the whole conglomeration of things that is very complicated, yet very simple. When all is said and done, reliability is a huge advantage for a company. You are only spending money when you need to. But it’s very difficult to get there.”

Wenzel said that consistency is a key to reaching reliability goals. Eli Lilly has global quality standards and good manufacturing practices that are applicable to each of the company’s sites across the world.

“Reliability means the equipment is ready each and every time it runs, and it should perform the same way each time,” Krodel said.

Doug Elam is Level 4 vibration certified, which is a rare level of qualification. He works on Overbey’s team and also tried to define reliability. “Reliability is an all-expansive subject that touches on different types of technology, the goal of which is to improve efficiency in machinery performance,” Elam said. “It requires an intense study of the background functions of the machines.”

Eli Lilly and Company uses robots on an assembly line to carefully package its products.

Eli Lilly and Company uses robots on an assembly line to carefully package its products.

Regardless of the definition, reliability for Eli Lilly always circles back to the human element.

“Patients come through and perhaps are on insulin or a certain pill, or a cancer treatment that has changed their lives,” Wenzel explained. “We listen to them, because it’s not just the medicine that matters, but the packaging and ease of use. It puts what we do in perspective. We take this feedback and incorporate it into our designs. It starts with an end user’s idea and need, goes to design, goes through production, then back to the end user. It’s like a circle of life.”

The research is carefully conducted with the end user always in mind.

“A lot of research is done to make the best fit for each subset of people,” Wenzel continued. “And at the end of the day you have a marketable product that you can be proud of. Being on both sides of the business, you understand why medicine is so costly. But when you find the one niche that helps cancer patients, or the kid who is near death, and then you can be a part of developing this medicine that completely changes his life, it just makes it all worthwhile.”

And yes, it’s personal.

“When you know people who use the products,” Wenzel said, “the work you do becomes a part of you.” MT

Michelle Segrest has been a professional journalist for 27 years. She specializes in the industrial processing industries and has toured manufacturing facilities in 40 cities in six countries on three continents. If your facility has an interesting maintenance and/or reliability story to tell, please contact her at michelle@navigatecontent.com.

114

7:03 pm
April 12, 2017
Print Friendly

Human Reliability: More Than Half the Answer

klausblacheBy Dr. Klaus M. Blache, Univ. of Tennessee, Reliability & Maintainability Center

My prescription for achieving reliability incorporates human reliability. This human element consists of people, processes (engineering and machinery/equipment), and products that lead to best practices and customer deliverables. In short, the better you do things, the more availability and throughput you get.

Reliability is about dependable engineering processes that support designing-in and sustaining machinery/equipment (M&E), maintenance practices to enable early detection of issues, and specifications that guide the purchase of maintainable M&E. Aspects to consider include:

  • Accessibility
    • easing access in performing maintenance
    • eliminating the need for special tools to gain access
    • designing out the need to remove components and other items that haven’t failed to get to those that often do fail.
  • Modularity
    • making each equipment module easy to handle by one person
    • ensuring that disposable modules are easy to reach
    • designing out the need to dispose of long-life parts by using disposable parts.
  • Diagnostics
    • capturing enough data for problem analysis
    • analyzing faults and issues down to the component level
    • ensuring that performance data is captured and stored for analysis, supplier feedback, and internal continuous-improvement teams.

To me, maintainability refers to the “ease and speed of maintenance to return the system (people, process, machinery/equipment, and product) back to its original operating condition.” Maintenance is the repairing or servicing of a product or machinery/equipment. Maintainability is a design parameter (like the preceding examples) to minimize or optimize repair time.

Unfortunately, research shows that human error is still occurring at a high rate. Failure-rate studies have found that more than 50% of all equipment fails prematurely after maintenance work has been performed on it. This has been evidenced in many types of equipment systems and organizations. To better understand how human performance influences risk associated with nuclear power plant operations, the U.S. Nuclear Regulatory Commission (NRC) requested a study (INEEL/EXT-01-01166) that showed the average human-error contribution to the increase in risk was 62%. In the same study, maintenance practices and maintenance-work control errors were evident in 76% of the events, and operations errors were present in 54%.

What can be done? For new M&E, there’s an opportunity to design-in numerous maintainability concepts. More opportunity, however, is in existing facilities. A good first step would be to perform a PM Optimization (PMO) to eliminate any unnecessary tasks and related interventions.

A PMO will pinpoint if the M&E requires further design review, changes, and frequency in how those reviews are performed, or if they should be eliminated. Mature operations have lots of mistake-proofing and visual controls for operations. This technique should be expanded to include maintenance to support maintainability needs and reduce availability risk.

Human reliability is related to the field of human factors (ergonomics), which refers to designing work areas, work practices, and workflow to accommodate the capabilities of people (operators and maintainers). These factors can’t be ignored. This applies to all types of industries. According to the Occupational Safety & Health Administration (OSHA), 30% to 50% of your recordable injuries are somehow related to ergonomics.

Understanding and instilling human reliability, in turn, is the key in interconnecting the daily functional links to reliability and maintenance that drive real-world outcomes in availability. And it’s more than half of the answer. MT

Based in Knoxville, Klaus M. Blache is director of the Reliability & Maintainability Center at the Univ. of Tennessee, and a research professor in the College of Engineering. Contact him at kblache@utk.edu.

1342

7:14 pm
February 9, 2017
Print Friendly

Reliability on a Global Scale

An aerial view shows the entire RIL-Hazira facility, covering more than 4 square kilometers. All images provided by RIL-Hazira.

An aerial view shows the entire RIL-Hazira facility, covering more than 4 square kilometers. All images provided by RIL-Hazira.

Petrochemical plant in India commits to superior maintenance to build a world-class program.

Continue Reading →

871

3:25 pm
December 28, 2016
Print Friendly

Maintenance Excellence on the Cutting Edge

Greenheck uses “pit stop” Kaizen events and other key tools to encourage and implement continuous-improvement projects.

Greenheck's Trumpf punches are a major part of its manufacturing process.

Greenheck’s Trumpf punches are a major part of its manufacturing process.

It’s not difficult to spot the shiny, steel, domed rooftop units that keep the air moving in industrial, commercial, and residential buildings. These are a core product of Greenheck Fan Corp. Becoming a market-share leader for air-movement components hasn’t happened by accident for the Schofield, WI-based corporation. Through strategic and progressive capital investments in equipment, technology, and people, the company has thrived by living on the cutting edge.

“We actually live on the bleeding edge of technology,” said Greenheck’s maintenance-technology supervisor Paul Smith. “We are so fresh and progressive, we sometimes get technology that isn’t necessarily proven yet. We get the opportunity to make this happen, and it gives us an incredible advantage.”

A high-tech fiber laser cuts sheet metal for various product parts.

A high-tech fiber laser cuts sheet metal for various product parts.

Ask any of its 3,400 employees—from co-founder Bob Greenheck to upper management, to maintenance journeymen and operators. This fearless approach to ingenuity and new ideas has led to a robust continuous-improvement program that helps the company process 20 million pounds of steel annually to build air-movement-and-control equipment that includes fans, dampers, louvers, kitchen-ventilation hoods, energy-recovery systems, and make-up air units from just one of its 17 Schofield facilities. Greenheck also has manufacturing facilities in California, Minneapolis, Tennessee, Kentucky, North Carolina, Mexico, China, and India.

Greenheck was founded almost 70 years ago when brothers Bernard and Bob Greenheck began manufacturing lawn mowers and milk-delivery cooling troughs in their horse barn in Schofield. Bernard was a sales and marketing expert, while Bob was an engineer and manufacturing guru. This combination of skills helped to build the innovative company, which is still privately owned and operated. “Innovation is just part of this company’s DNA,” said manufacturing-operations manager Mark Haase. “Bob Greenheck has always been an innovator. He is super intelligent and still very involved in the business. He is able to look at a process and question why are we doing it that way. His approach is to go find a machine that will do what we need it to do. If we can’t find it, let’s make one that will make the manufacturing process easier and better for our customers.”

Greenheck engineers work closely with operations, maintenance, and key vendors to leverage ideas that improve processes, reliability, production, and end-user satisfaction. Greenheck executives are not afraid to make capital investments that support continuous improvements.

“We have a whole operation dedicated to building equipment for ourselves,” Haase said. “A lot of our equipment is custom. We are able to take some labor out of the process and do things more efficiently. The company is willing to make the investment. Bob Greenheck then likes to see the return on that investment. It is common to see him in the plant, especially when we get a new piece of equipment. He wants to know if it is running yet.”

It’s not just equipment and technology that get attention from the top. In 2003, a substantial investment was made to achieve maintenance excellence. The investment began with hiring Jim King as the company’s maintenance project manager.

The drive for excellence

Tom Schmidt, a 30-yr. journeyman tool-and-die maker looks over a stamping die.

Tom Schmidt, a 30-yr. journeyman tool-and-die maker looks over a stamping die.

Six of the 17 facilities in Schofield have manufacturing operations. Within each manufacturing site, there is a maintenance and tooling body shop. Facility 2 is the largest, with 325,000 sq. ft., employing 550 people over three shifts. This facility produces more than 2,000 production orders every day and manages more than 40,000 individual parts.

The company is structured into six primary business units with more than 1.5 million sq. ft. of space on the Schofield campus. King, now maintenance manager, oversees maintenance of all the facilities, and his Maintenance Excellence team supports the entire global operation.

“The past 13 years has been a continuous process,” King said. “There is constant change on the manufacturing floor, so we are just adapting to what’s happening around us.”

The Maintenance Excellence team consists of 59 maintenance professionals in Schofield, including 43 journeyman mechanics and technicians. In addition, there is a team of seven automation-and-control technicians, focused on reliability maintenance.

There are 93 maintenance professionals throughout Greenheck’s U.S. facilities. In 2015, they processed more than 135,000 work orders. On a normal week, the team averages 100 to 150 work orders each day.

When King arrived in 2003, the company had just started its GPS Program (Greenheck Performance System), modeled after the Toyota Production System (TPS). In doing so it partnered with Rockwell Automation. The Rockwell Automation team performed a three-month audit that left Greenheck with much room for improvement and the ability to identify some low-hanging fruit.

“On a scale of 1 to 1,000, we scored 382,” King said. “This was a tough pill to swallow, but it triggered the creation of our Maintenance Excellence program.”

Prior to this audit, Greenheck operated on a batch-and-queue system where excessive numbers of spare parts were always sitting on shelves waiting to be used. The shift was made to a single-piece-flow model that was cost effective from a production standpoint. Since spare parts were less available, it forced the maintenance department to develop a more robust preventive-maintenance program.

Continuous-improvement tools

Some high-volume parts are still made in batches. This press can produce thousands of damper parts within a shift.

Some high-volume parts are still made in batches. This press can produce thousands of damper parts within a shift.

King could easily pinpoint some of the improvements and big wins credited to the GPS Maintenance Excellence initiative that began 13 years ago.

Sweep of spare parts inventory. In 2003, Greenheck had about $990,000 in spare-parts inventory. The company increased its critical spare-parts inventory by more than five times. It is a bigger investment on the front end, but saves much more in downtime and efficiency.

“We cannot call a service company and wait for someone to get here,” he said. “More than 95% of our maintenance happens in house. The only times we go to an outside vendor is with machines that carry a warranty.”

The company tracks more than 7,000 assets. The entire corporation shares the same CMMS system. “All the plants across the U.S. can see the same database we see,” King explained. “Many of our plants work in triplicate so, for example, we have damper plants here in Wisconsin, in Kentucky, and in California. If you walked into one of them blindfolded, you would not know which plant you are in. They are identical. From a maintenance and critical spare parts aspect, we don’t have to stock three of everything.”

Utilizing a CMMS system. One of King’s first improvement efforts involved entering work-orders in the CMMS system. This was difficult to accomplish, at first. “We had many senior mechanics and technicians who didn’t like the idea of entering their own data into a computer,” King said. “But it didn’t take long for them to understand and appreciate the value. Now we have a work-order history and a machine history. Once we got their buy-in on this initiative, they began to believe in what we were trying to do.”

Greenheck developed a very elaborate and robust PM program, King said. “In our CMMS system for preventive maintenance we now have more than 300,000 individual tasks and procedures written for PMs.”

Even with the CMMS system, they didn’t have a formal machine documentation-and-control system in place. “We created a file-folder system for each individual plant,” King said. “Everything is listed numerically by asset number. You find your folder and check it out. Prior to that, it was anybody’s guess where stuff was. There was no rhyme or reason. So the cost savings in time alone has been huge.”

Coil stock is staged in the Greenheck stamping department.

Coil stock is staged in the Greenheck stamping department.

Pit stops. The company sponsors three-to-five day Kaizen events called “pit stops.” One of the first pit stops focused on a new IBS (integrated blankin system) the company purchased. “It was new to everyone, so it was a painful process for them and for us,” King said. “We brought in this incredible technology and wanted to be able to produce parts right away. We used the pit-stop training to break it down into individual sectors and the skills trade people began to see the benefits of taking the time for this kind of training. We learned how the machine worked and ways to prevent it from breaking down.”

The company sometimes offers as many as five to 10 pit stops every week with two to 12 participants in each. “These include the aspect of 5S and are modeled after TPS,” King said. “This is all part of the original creation of our GPS system. This is a program that’s almost 14 years old and is still going very strong.”

Greenheck moves fast with new technology, Smith said, and getting the team up to speed as quickly as possible is crucial. The pit stops are effective in accomplishing this goal.

“Whether it’s equipment addition, equipment removal, or an equipment move, we sometimes get one of these per day,” Smith said. “We recently moved several of our large CNC turret punches from several different facilities globally to even their workload and extend their life. That would be a year-long planned event for some companies. For us, it’s a Thursday.”

Customized PM system. When King arrived at Greenheck, there was no formal planning and scheduling system in place. “We tried to incorporate this, but honestly, it didn’t fit with our model,” King said. “So we moved to a formula where all our maintenance supervisors do the planning and scheduling for their dedicated segments.”

Smith said the GPS system, within the controls-and-automation group, empowers the mechanics and technicians to coordinate their own projects, which includes ordering their own parts and working with production and the supervisors. “The supervisors are here as a means to empower them to get done what needs to get done,” Smith said. “We all have continuous-improvement tools, like the TPM processes, to continue to support the floor-level guys. Greenheck is so fluid and we move so fast that by the time you put a plan together, it’s already changed. So the original structure of planning and scheduling doesn’t really fit our needs here. Giving autonomy, training, responsibility, and ownership to mechanics and technicians works much better for us.”

Growth in automation and controls. As technology became more robust, the level of technical skills required to be able to maintain these highly advanced pieces of equipment also increased. Greenheck now uses technology, such as thermal imaging and ultrasound, to provide greater reliability.

Maintenance and operations evolution

High-density shelving helps the maintenance team organize $5 million of parts inventory.

High-density shelving helps the maintenance team organize $5 million of parts inventory.

Manufacturing operations manager Mark Haase has experience with Greenheck in many roles since 1991 and has seen the evolution of continuous improvement.

“Maintenance is integral to what we do, especially with regard to our component resource center (CRC) which has the largest concentration of capital equipment for the company,” he said. “About 80% of what we do feeds into this building (Facility 2). We serve our own business needs, but we are also a service center to the entire company.”

Greenheck is a configure-to-order operation, Haase explained. “Orders come in and we build them from scratch. We don’t go to a shelf and pull parts, and we don’t have inventory buffers. A long run for us is maybe 10 units that are alike. So continuous flow is very important to us.” Haase remembers when efficiency and maintenance excellence were not core competencies.

“In the mid-to-late 1990s, when a key machine would go down, we would have to search for the part, order the part, wait for the part to be delivered, and, hopefully, when it arrived, it was right,” Haase remembered. “So we saw downtime as a really significant factor in our business. We had inventory, which would help us for a while, but we weren’t happy about tying up capital in inventory when we could be using it for machinery and technology. The one-piece-flow system has helped to minimize the downtime. We PM’ed our machines in those days, but more at a 30,000-foot level. Now we are down to 10-foot level with much more detailed PM of the machines.”

Greenheck takes advantage of its multiple resources. “The maintenance and operations teams work together. Several can be pulled from other business units to help with urgent work. We have the resources somewhere on campus to service critical needs. When I think back to 90s, I spent lot of my time chasing the maintenance issues,” Haase said. “I don’t worry about those things today because there is a very competent group with many programs in place. The amount of spare parts we keep on hand is a huge investment, so if something goes down we can make the change quickly and effectively and get the machine up and running.”

Since supervisor Paul Smith works with advanced technology, this confidence in maintenance becomes even more critical.

“We have some CO2 lasers, which are incredibly maintenance intensive,” Smith said. “The fact that uptime is high is impressive. Mark [Haase] and upper management really do understand the value of the maintenance program and how it reflects on uptime. A good example is in June when we did laser PMs, and we monitored and tracked lots of data. We noticed a trend that annually, for the past seven years, we’ve had a power drop on one of the lasers. We would replace all the mirrors and get our power up. It cost $7,000 to replace the mirrors, so it was worth it. But last year we replaced the mirrors and the power did not come back up as much as we wanted. The laser was still functioning perfectly and within the appropriate power band, but we could see it was starting on that curve of failure. Mark and upper management understand you must invest in the maintenance program for it to work. Mark made the call to replace the resonator, and that’s $130,000. That’s not something you do for no reason. But this company made it happen. We replaced the resonator, the power is back up, and we don’t have maintenance issues we had before.”

Apprentice Mike Zywicki (l) and CRC Lead Journeyman Mechanic David Sondelski (r) complete a scheduled PM.

Apprentice Mike Zywicki (l) and CRC Lead Journeyman Mechanic David Sondelski (r) complete a scheduled PM.

Smith said this is a good example of how the system works. “We were doing our PMs, graphing it, tracking it, looked back, saw a trend, monitored the trend, when we began to experience the failure curve we reported it to upper management. Upper management said, ‘We trust you, we believe you when you say this will be a problem in the future,’ and they made our suggested solution happen.”

The support from upper management goes back to the DNA of the company, Haase added. “Bob Greenheck has always been active enough in the business that if he saw a dirty machine or if he saw a machine that wasn’t being maintained, or if he saw someone mistreating a machine, there was limited tolerance for that,” he explained.

“This is our lifeblood. We made this investment in the equipment so we need to take care of it. We weren’t always in a position to go out and buy the latest technology. Before my time, people can tell you the story of when a building had burned down but there was an old punch left after the fire. Bob bought it, hired a guy to rewire it and that was our first CNC programmable punch. So for Bob, to buy a new machine, you better take care of it.”

“We are not a profit center. We are a cost,” Smith stated. “But the investment is still made. There was probably a time when the company really felt the pain. In order to grow in lean manufacturing, the maintenance department had to grow with it.

According to Jim King, Greenheck is fearless in its pursuit of excellence. “We are very fluid. With regard to change, it’s not just in maintenance. We shuffle manpower, and we shuffle equipment. When we get new people, we get a new set of eyes and a new set of ideas. A lot of companies look at some of these big ideas and just say ‘that’s a huge project.’ We look at it and say ‘this is a weekend.’ We’ll come in and knock it out.”

Haase agrees. “We found a recipe to be successful in a business that is low volume, high variability, and high configurability,” he said. “That’s where we excel. MT

Michelle Segrest has been a professional journalist for 27 years. She specializes in the industrial processing industries and has toured manufacturing facilities in 36 cities in six countries on three continents.

Boards facilitate daily meetings. Anyone can submit a suggestion or question that is then tracked for improvement.

Boards facilitate daily meetings. Anyone can submit a suggestion or question that is then tracked for improvement.

Greenheck Reinvents TPM

Dr. Klaus M. Blache, director of the Reliability & Maintainability Center at the Univ. of Tennessee, Knoxville, and a College of Engineering research professor, recently spent time working with and analyzing Greenheck’s GPS program. This is his assessment.

As I’ve stated in many presentations, “If you have a robust, small-team, continuous-improvement process (CIP), almost any effort can be made to be successful.”

This is at the core of why the Greenheck GPS/CIP works. They have engaged people who want to make a positive difference. Their initiatives are further supported by a management style that fosters new ideas and implementations, a desire to consistently produce a quality product, and mutual respect for employees and their contributions at all levels.

This is the elusive stuff that companies look for and many never find. While observing a continuous-improvement event and touring the facility and the display/Innovation Center, I was reminded of an early book, Built To Last: Successful Habits of Visionary Companies (Collins and Porras, 1994). We used this book as a reference when developing strategy for the Society of Maintenance and Reliability Professionals. The key theme was around “preserving core values while stimulating progress.” It prompted us to try many new things and keep what works.

For Greenheck, preserving the core means being the leading supplier of air-movement and control equipment that includes fans, dampers, louvers, kitchen ventilation hoods, and energy-recovery and make-up air units. Their BHAG (Big Harry Audacious Goal) for TPM (Total Productive Maintenance) to stimulate progress is “80% of all equipment-related problems can be detected by operators with proper training.” This philosophy is used on in-plant postings.

Greenheck has executed thousands of Kaizen events throughout the past 14 years. The Greenheck Performance System (GPS) was modeled after the Toyota Production System, with TPM integrated into it. In this ongoing journey, the focus is on throughput and flow versus OEE (overall equipment effectiveness).

For those who understand its beginning, OEE was intended to be a tool to reduce availability, performance, and quality losses on one machine at a time rather than measuring how it is used today. They work on floor processes (with value stream mapping) and office processes (with swim lane mapping).

Once best practices are found, Greenheck understands the value of clarifying workflow and standardizing their processes. They perform PM-completed audits and lean audits. The team members understand that CIP needs to start immediately and continue during the life cycle of the machinery and equipment. This is evidenced by Kaizen events on new equipment and existing operations.

Greenheck does many other things in the areas of visual controls, lubrication, and customized maintenance manuals. Operator involvement in the multi-disciplined Kaizen events is key. The pride of working for Greenheck Fan was evident in all of my discussions with operators, trades/technicians, engineers, and leadership.

In summary, Greenheck Fan nurtures the culture needed to sustain a highly functional CIP. This enables it to put maximum focus on issue resolution.

The complete original definition of TPM (Seiichi Nakajima, Introduction to TPM, Productivity Press, 1988) includes these five elements:

— TPM aims to maximize equipment effectiveness (overall effectiveness).

— TPM establishes a thorough system of PM for the equipment’s entire life span.

— TPM is implemented by various departments (engineering, operations, maintenance).

— TPM involves every single employee, from top management to workers on the floor.

— TPM is based on the promotion of PM through motivation management and autonomous small group activities.

Greenheck Fan has instilled these concepts, resulting in an effective TPM process.

—Dr. Klaus M. Blache

Navigation