Archive | Pumps

23

4:07 pm
April 12, 2016
Print Friendly

Injection Pumps Provide Reliability For Gas Producer

The BB3 API-standard bare-shaft pump offers “drop-in” installation that fits in existing infrastructure. Photos: Standard Alloys

The BB3 API-standard bare-shaft pump offers “drop-in” installation that fits in existing infrastructure. Photos: Standard Alloys

Horizontal split-case pumps transfer gas from storage wells to the pipeline.

By Bryan Orchard

The BB3 horizontally split-case API pump is used extensively by pipeline companies operating in the shale gas, liquefied-petroleum gas (LPG) and liquefied-natural gas (LNG) markets.

“BB3 pumps are used within terminals to transfer the gas into the pipelines from storage wells,” explained Richard Martinez, managing director at Standard Alloys Inc., Port Arthur, TX. “These pipelines employ pump stations at various intervals along their length, and many of these pumps are coming to the end of their service lives. There is no desire to replace redundant pumps with new units. The last thing that they want to do is change drivers, put in new foundations, and change piping connections to accommodate new designs.”

The most cost-efficient solution is to use a bare-shaft pump that can be easily dropped into the existing infrastructure where operators know that the nozzles, casing feet, and shaft couplings will fit.

A SUCCESSFUL APPLICATION

Targa Resources Corp., Houston, is a provider of midstream services in North America. In 2015, Targa installed a BB3 pump for the specific duty of injecting ethane propane mix (EP) into storage wells at the plant’s salt dome. The double volute, eight-stage split-case centrifugal pump is fitted with 10.187-in. closed impellers and provides a flow of 1,200 gpm running at 4,000 rpm, with a suction pressure of 260 psig, and a total developed head of 3,800 ft. The pump can graduate from moving a product of specific gravity 0.38 all the way up to 0.50, which gives them the ability to move heavier end products. Installed on an existing product train, the pump has been built specifically for this application.

“We were given the flow parameters and head capacities. We went into our database to see what we had that was closest to the specification,” Martinez said. “We found a closely-matched pump and used this as a platform to custom build the flow and head required. We produced a special package that went beyond the generic specification typically found in API-610. It had to fit the same foundation as the original pump, so a custom base was designed to facilitate a perfect fit.”

Martinez said his company had already supplied similar pumps for transfer duties, but this one was specifically engineered for well injection.

The rotating element is set inside the lower casing during manufacturing.

The rotating element is set inside the lower casing during manufacturing.

HIGH RELIABILITY

Steve Ferguson, Targa’s rotating-maintenance supervisor emphasized the importance of extreme reliability for this application. Regular maintenance inspections are implemented by Ferguson’s reliability team. The new injection pump has replaced a standby pump that had reached the end of its service life. For reasons associated with the casing, it had to be condemned.            “A problem with older pumps is that in the event of failure, weld repair from erosion will be required,” Ferguson said. “This is not possible because, over time, electrolysis leaches the carbon out of the material so the base metal will not accept the weld metal. Also, there is the problem of carbons leaching, which weakens the case. Pressure testing repairs cannot be performed. Therefore, replacement pumps are required.”

For years Standard Alloys’ core business was in manufacturing replacement pump parts. In 1992 this changed when the company made its first complete bare-shaft pump. Now they produce API qualified bare-shaft replacement pumps for brownfield and greenfield applications, exploiting opportunities where an existing pump may be obsolete or where material or engineering upgrades are needed.

“Our target is pump operators that may have seventh or eighth edition API pumps that need replacing with a direct ‘drop-in’ ,” Martinez said. “They don’t want to change the foundation due to the casing foot location or modify the suction and discharge nozzles. They also don’t want to relocate the drive unit. RP

Bryan Orchard is an independent journalist reporting for KSB Group.

29

8:17 pm
April 11, 2016
Print Friendly

My Take: Get Pumped

1014janemytakeBy Jane Alexander, Managing Editor

As mentioned in this column before, editing magazines is my second career. It started almost 17 years ago when I began covering all things related to the industrial-fluid-handling pump market.

Oh, what a big “room” that was! Thrown into it by accident, I soon learned that pumps, after electric motors, were the most purchased industrial items in the world. Pumping systems, i.e., pumps, seals, bearings, motors, controls, instrumentation, and the technologies that kept everything aligned and running as desired, became a major focus for me. As did pump-user workforce issues—something that was also capturing the serious attention of pump-using industries.

For me, the ongoing skilled workforce crisis that Maintenance Technology has been highlighting for the past decade first reared its ugly head in the pump world. Circa 1999, operations were already anguishing over the loss of seasoned pump pros from their ranks. The amount of “tribal knowledge” disappearing with the “old hands” was alarming, given the fact pump operation and maintenance courses typically weren’t a big part of engineering- or vocational-school curricula.

Granted, Dr. Dara Childs and the Texas A&M Univ. (TAMU) Turbomachinery Laboratory, College Station, were trying to keep practical pump education and knowledge transfer alive. The Advisory Board of the TAMU Pump Symposium (now in its 32nd year) was a veritable “Who’s Who” of the greatest living pump experts on the planet. Still, the timing and location of the annual Houston-based Symposium weren’t necessarily the best for all aspiring pump users across North America, and programs sometimes skewed toward the theoretical.

While pump-industry suppliers had always offered various training courses to meet growing demand, other opportunities—often hands-on in nature—began appearing around the country. One example that immediately comes to mind is the long-running Mid-Atlantic Pump Symposium, presented by the Baltimore/Philadelphia-based industrial-equipment distributor Geiger-Smith Koch.

There were other efforts as well, including a number of value-added, non-Houston-based, open training sessions and workshops. That’s how I met one of my favorite pump-training gurus, Sam Buckles, of Eli Lilly and Co., Indianapolis. He and his enormous working-pump rig appeared on my radar screen in one of the first such workshops I attended—and I continued to see him using the equipment to train new generations of pump users throughout industry (much like he did at Eli Lilly) several times thereafter.

Although Sam has retired, I understand his well-traveled pump-training equipment is still in service. I was delighted to learn of this at the 2016 Univ. of Tennessee Maintenance & Reliability Conference (MARCON) in Knoxville. That’s where I met an amazing woman named Rendela Wenzel.

As an Indianapolis-based consultant engineer in Eli Lilly’s Global Plant Engineering, Maintenance, and Reliability organization, Rendela has done—and continues to do—many interesting things. Among them, she implemented pump training courses for the masses at Eli Lilly, and now drives the company’s global pump, vacuum-pump, mechanical-seal, and basic and advanced lubrication-fundamentals training programs. Accordingly, she has become the keeper of Sam Buckles’ training rig. Having gotten to know her, I’m confident this equipment and the associated training programs, like everything else that she manages for Eli Lilly, are in good hands. To learn why, turn to page 17. 

Rendela Wenzel is the subject of this month’s “Voice from the Field” profile by contributing editor, Michelle Segrest (another veteran of the pump arena, BTW). My take is that you’ll be just as impressed with this industry “Voice” as we are.

On a related note, speaking of pumping systems and amazing women, check out April’s special “Reliable Pumping Section” that Michelle Segrest also produced. Beginning here and focusing on oil and gas matters, it’s the first in a series of sections on various pumping applications that we’ll run this year. Stay tuned. MT

jalexander@maintenancetechnology.com

219

1:51 am
April 11, 2016
Print Friendly

Solve Oil and Gas Pumping Maintenance Problems

Blackmer sliding-vane pumps stand ready to meet the needs of the rapidly growing oil and gas industry in the United States. Photo courtesy of Blackmer, a brand of Dover’s Pump Solutions Group.

Blackmer sliding-vane pumps stand ready to meet the needs of the rapidly growing oil and gas industry in the United States. Photo courtesy of Blackmer, a brand of PSG, a Dover company.

Experts describe some of the common maintenance issues that arise in oil and gas pumping systems, and demonstrate some of the ways to solve them.

By Michelle Segrest, Contributing Editor

In some parts of North America, you can still clearly see the oil and gas pumping industry hard at work. Fly over Texas and see a checkerboard of sucker-rod “donkey” pumps, nodding in unison, pulling up millions of barrels of oil from deep beneath the surface.

At hydraulic fracturing sites, gigantic “frac” pumps dominate the landscape and shake the earth—splitting the mud, shale, and rock into bits with enormous pressure. That’s how oil corporations and service companies capture the elusive black gold buried deep inside—the material that literally fuels the multi-billion dollar oil and gas industry.

You can’t see the pumps that dive thousands of feet below the ocean’s surface from offshore rigs, and the pumps that transport the oil and gas are not visible, either. Hidden inside about 140 huge refineries throughout the U.S. there are even more pumps that keep the oil and gas industry functioning. It is up to the experienced maintenance professionals to make sure all of these pumps are hard at work every second of every day.

The massive oil and gas industry relies on a wide variety of pumps to perform every stage of the process—including upstream, midstream, and downstream functions. According to The Freedonia Group, Cleveland, the United States demand for oil and gas infrastructure equipment is forecast to hit $12.1 billion through 2016, which makes this a market that is vitally dependent on equipment that runs efficiently.

Quickly identifying problems and solving them effectively is vital to this giant industry.

Screen Shot 2016-04-12 at 10.38.15 AM

(Click to enlarge.)

Common problems and solutions

Different pumps present different obstacles, especially within a market as diverse as oil and gas. Mark Dufrene is the general manager for Pump & Process Technologies, a division of CastleOak LLC in Longview, TX—a distributor of Blackmer, Pentair, EnviroGear, Aurora, Fairbanks, Myers, and other centrifugal, rotary-gear, positive-displacement, and reciprocating pump brands for oil and gas applications. Each pump for each application must be treated differently.

According to Dufrene, a 27-year veteran of the pump industry, “There is a tendency to treat centrifugal and positive-displacement pumps the same. Some people use a control system on centrifugal pumps and just throttle back on the valve to control the flow. You can’t do this with a positive-displacement pump because, when you throttle back on the discharge valve, you create more pressure. It becomes self-defeating.”

One of the biggest problems contributing to excessive pump maintenance in the oil and gas space involves having a pump that is improperly sized or misaligned, Dufrene said. “People sometimes think bigger is better, but this is not always the case,” he said. “This can be a system issue.”

Advancements in technology, such as variable-frequency drives (VFDs), have contributed greatly to the longevity of most oil and gas pumps and have helped keep the maintenance manageable. A VFD is a type of adjustable-speed drive used in electro-mechanical drive systems to control AC motor speed and torque by varying motor input frequency and voltage.

VFDs can optimize impeller diameter, which slows down the equipment and gives it longer life and less wear. “Instead of running the equipment at 1,800 rpm, with a maximum impeller diameter it can run at 1,400 rpm,” Dufrene explained. “This doesn’t sound like much, but it makes a big difference. It can extend the life of the pump and prevent it from running dry and cavitating. VFDs and other PLC controls can help to eliminate some of the misapplied and improperly sized equipment because you can use the speed control to compensate for errors made in pump selection.”

Changes are inevitable, and each change presents new maintenance concerns. “Every day is different,” Dufrene said. “If a guy has a mission to pump liquid from Point A to Point B, that is pretty simple—but it is not reality. When you dive into someone’s process and discover they want to pump from Point A to Point B to Point S to Point Z, it becomes more complicated. Every time they make a change, the system curve changes. Therefore, the pump curves change, but they may be using a fixed-speed piece of equipment to do all of the applications. This is not realistic, and it leads to problems. The pump does not always operate at the one design point. This is a dynamic system as opposed to a static system.”

A Griswold 811 series pump installed in a Lease Asset Custody Transfer (LACT) unit located in the Eagle Ford play in Texas. A LACT unit automatically measures, samples, and transfers the oil from a lease location in the oilfield into a pipeline. Photo courtesy of Griswold, a brand of PSG, a Dover company.

A Griswold 811 series pump installed in a Lease Asset Custody Transfer (LACT) unit located in the Eagle Ford play in Texas. A LACT unit automatically measures, samples, and transfers the oil from a lease location in the oilfield into a pipeline. Photo courtesy of Griswold, a brand of PSG, a Dover company.

Five pump-maintenance problems

Odessa Pumps, a DistributionNOW Company, has been providing equipment to the oil and gas market for more than 30 years with a full range of applications, including chemical injection and high-pressure injection pumps. Joe Lewallen, Jr. is the general manager of Applied Pumping Solutions for Odessa Pumps’ Irving, TX operation, and Brian Verdehem is director of sales. They describe their five most common maintenance problems and solutions for oil and gas pumping applications.

Improperly sized and installed equipment. “It’s a fact that the majority of centrifugal pumps installed today are oversized.” Verdehem said.  Pumps are often oversized for an application then operated in an unstable region of the centrifugal pump performance curve. “Operating in these unstable regions of the pump curve can result in lower mean time between repair (MTBR) on the seal and bearings, as well as the turned and cast components,” Verdehem said. “This is especially prevalent in pumps with higher suction specific speeds (>11,000 Nss), where the stability window on the curve is less forgiving. These factors can often be avoided by properly sizing the pump and configuring the pump package with a VFD. Operating in variable speed can ‘right size’ the pump performance curve to the current system variables. Having a pump supplier who knows pump hydraulics and who can evaluate the system head variables is essential to implanting a successful VFD system into a pump installation.”   

Screen Shot 2016-04-12 at 10.37.06 AMImproper installation and baseplate design. According to Lewallen, “After the pump is chosen for an application the next step is to provide the best possible base for the pumping unit. This involves engineering the pump skids and the use of advanced baseplate design for the pump units. Odessa Pumps provides Griswold ANSI pumps on our DurAlign baseplate to ensure the best possible motor-to-pump shaft alignment.” Machined pump and motor pads ensure that the manufacturer’s installation requirements can be met and maintained. “For the Blackmer rotary-vane packages, our engineers design and oversee the manufacturing of heavy duty baseplates with the same machined pads to ensure long trouble-free operation,” he said.

Contamination of lubrication leads to bearing failure. Bearing failure is the biggest cause of maintenance issues in pumping applications. Proper lubrication of the bearing is the simplest way to avoid it. “Changing and maintaining an optimal environment for the lubrication fluid by investing in labyrinth or magnetic type bearing isolators, can provide great benefits on extending the machine life on oil-sump designs, and avoiding unexpected failures. Investments in oil-mist systems are often an efficient way of lubricating multiple pump assets within a consolidated production or process unit,” Verdehem said.   

Improper mechanical-seal selection results in premature seal failure. Centrifugal pump units in the oil and gas sector also require an extensive knowledge of mechanical seals. “New sealing technology and proper material selection leads to longer operation before service is required,” Lewallen said. “Many customers and equipment providers omit this important part of pump application. Misapplication of the seal design is one of the most common areas of centrifugal pump failure, and once the seal fails, that can lead to loss of product, environmental contamination, and other maintenance issues.”

Incorrect material selection on pump material and gasket/elastomers, resulting in premature failure. “Liquid compatibility with the gaskets and elastomers in a pump’s construction are often overlooked by customers and inexperienced pump suppliers,” Verdehem said. Taking the extra time to ensure that your metallic and non-metallic pump components are compatible with the liquid during the pump-proposal stage, can help decrease the onset of premature and costly downtime. There are plenty of publications and compatibility charts available online for use in confirming compatibility on metallic and polymer based components. An experienced pump supplier will take a conservative approach on material selection if they have full transparency on the customer’s liquid properties and process conditions. It’s important that customers provide the pump supplier with this information at time of quote request.

Best maintenance practices

Preventive maintenance in oil and gas pumping applications is much the same as in other industries, Lewallen said. “On larger horsepower equipment a baseline vibration reading is taken when the equipment is commissioned. Our technicians provide a PM service for many of our customers. With an initial vibration reading by our technicians, subsequent readings can identify a problem early.” 

“Shaft alignment to the manufacturer’s specification is also crucial,” Lewallen said. “The proper use of shaft sealing technology is another important factor for equipment reliability. Preventive maintenance performed by properly trained personnel will ensure long run times and prevent premature failure.”

Another best practice, according to Verdehem, is a proactive maintenance culture. “It’s no different than changing the oil in your car as instructed by the owner’s manual,” he said. “Most centrifugal-pump failures are a result of bearing and seal failure, so it is important that these two areas are given the most concentration.”

Monitoring vibration on a regular basis and identifying changes in the vibration spectrum can warn of a pending failure. “This way you can plan the maintenance and shutdown of the equipment. Proactive machine-health monitoring can have tremendous benefits for most types of rotating equipment,” Verdehem said.

Horse-head pump jacks at a Canadian site. Photo courtesy of ExxonMobil.

Horse-head pump jacks at a Canadian site. Photo courtesy of ExxonMobil.

Maintenance Challenges

Oil and gas pump professionals face challenging maintenance obstacles daily. Here are four interesting case studies:

VFDs at a Blending Facility. VFDs were used to optimize positive-displacement pumps for two different functions at a blending facility—loading trucks and loading totes and drums. “We use the VFD systems and run them at different settings,” CastleOak’s Mark Dufrene said. “To load the truck involves pumping 150 gpm. To load drums and totes the pump should run at about half speed. The VFD switches on, slowly fills up the drum to a certain level, then it ramps down and shuts off the unit. Instead of having someone over there with a trigger, it’s all automated. To improve the life of the pump, over time we are regulating the speed to slow the unit down and match application conditions. This increases reliability and MTBF.”

Refinery Condition-Monitoring System. Dufrene said his refinery customer had a boiler system that would run effectively most of the time. But, in certain circumstances, the pump would cavitate and fail. “No one could pinpoint the problem,” he said. “You could stand there for two or three days and nothing would happen. But as soon as you went home, the upset condition would occur. So we added a monitoring system to measure the suction pressure, discharge pressure, and temperature.”

Dufrene’s team placed a probe on the bearing frame to measure the product temperature and discovered that when certain systems in the plant were running, the pump was oversized for the application. The plant was running at maximum capacity most of the time.

“When it went to half capacity, they started having problems,” he said. “Using the monitoring equipment, we were able to chart exactly when it occurred and found out how the plant was operating. This showed us where to look to solve the problem. This is an example of when you take a little time and a little thought process you can make a big difference beyond just fixing it.”

VFDs for Centrifugal Pumping Systems. In most pumping applications, trimming the impeller reduces pump efficiency, sometimes by as much as 20% to 25%, Dufrene said. Running the system at the optimum impeller diameter and controlling the speed dramatically increases efficiency. “As conditions like head and pressure change, the VFD can speed up and match the system, as opposed to running to the right or to the left, which actually causes more maintenance problems,” he said. “If you use a VFD, you can match the system you have and improve efficiency.”

Centrifugal Pump Running Dry. A centrifugal pump running dry can be a challenge in many applications, and especially in the oil and gas industry. This is particularly an issue in tank or rail car unloading applications, as well as
certain applications within the pipeline, Verdehem said. 

“Dry run is the Achilles heel for pumps that have metal-to-metal wear ring designs on the rotary and stationary ring configuration,” Verdehem said. “Failures in this mode can often cost as much or more than a new pump unit. In these applications, customers can move to a stationary wear-ring insert constructed of a fiber-reinforced fluoropolymer material, with low creep and high thermal resistance. These materials on the stationary ring will not allow excessive heat build up during dry-run anomalies. This saves the pump from catastrophic damage due to dry run.”

Screen Shot 2016-04-12 at 10.37.23 AM

Tools of the trade

A big concern in the oil and gas rotating-equipment industry is the knowledge and experience gap with new professionals entering the industry and the retiring workforce. “Tools and gadgets and automation can give us quicker and more accurate responses,” Dufrene said. “But we still need to have a deep understanding of the fundamentals of the problems.”

Verdehem said that investing in a quality and reliable alignment device can provide long-term benefits for installed equipment. “Without proper alignment, one is installing a bad actor at the time of installation,” he said. “A vibration analyzer capable of generating a full spectrum can be a worthy investment from a predictive-maintenance perspective.”

Remote monitoring has been one of the biggest developments in the past decade, Dufrene said. “A lot of this equipment is installed in remote sites, and you can’t go out there and monitor it regularly,” he said. “A monitoring system sends an alarm or shuts down the equipment. This is a big advantage instead of having to ride out to 100 fields every day to check the equipment.”

Also, partnering with pump suppliers who have the experience with proper pump selection, installation, operation, and maintenance can provide long-term benefits to the end user, the experts agree. “Many pump suppliers have implemented a business model of only selling the new equipment and parts at a low price,” Verdehem said. “Those who can do that, plus provide the field and consultative services after the sale, are the partners that reliability-savvy customers value the most.” RP

Michelle Segrest has been a professional journalist for 27 years and has covered the industrial processing industries around the globe. Reach her at michelle@navigatecontent.com.

Maintaining Hydraulic Fracturing Pumps

ExxonMobil engineers inspect an oil and gas hydraulic fracturing truck. Photo courtesy of ExxonMobil.

ExxonMobil engineers inspect an oil and gas hydraulic fracturing truck. Photo courtesy of ExxonMobil.

Hydraulic fracturing pumps used in oil and gas service work are highly engineered, expensive pieces of equipment that can generate pressures as high as 20,000 psi and can weigh as much as 9 tons. Today’s multi-stage frac jobs mean longer pumping times, according to Kevin Hunter, Equipment Builder Group Engineer, Global Products Technology, ExxonMobil. 

Shale reservoirs are the driver of much of the fracking work today and often require extremely high pressures, Hunter said. These factors have combined to force hydraulic fracturing pumps to work harder than ever.

“These critical pumps have to pump abrasive fluid in multiple stages on each job and there may be 15 or more frac trucks and pumps on a single frac job,” Hunter said. “Frac pumps have to operate almost continually for several days before moving to the next job. Uptime is critical as the locations are often several hours driving time from their support site, and they may have a series of consecutive jobs scheduled.”

Pump builders are constantly working to update designs to improve reliability. Optimum lubrication can also improve uptime and extend maintenance intervals.

Frac pumps are comprised of two key components—the power end and the fluid end. The power end includes a gear set that takes the power from an engine and transmits it to the crankshaft in the power end used to drive the plungers that push the frac fluid.

One oil in the power end not only has to lubricate the gear set—which may be a helical, planetary, or a worm gear—but it must also lubricate the roller bearings, main bearings, connecting rod bearings, and crosshead guides.

“This requires a lubricant that can protect these diverse components in severe service, and in all weather conditions as the seasons change,” Hunter said.  “In addition, the frac unit may be moved from one geographic area to another to meet demand as ambient conditions change. A lubricant that can deal with a wide range of temperatures is important. In addition, the oil needs to flow well during cold starts in winter weather, flowing to all parts of the power end while still providing protection during a long frac job, despite the elevated temperature, which reduces oil viscosity.”

Typically, the biggest failure mode in power ends is the bearings. 

The other key component of a frac pump is the fluid end where the plungers apply pressure to the frac fluid. One key maintenance issue for fluid ends is maximizing plunger-packing life. In addition to good design and manufacturing processes, lubrication contributes to maximum plunger packing life. 

Traditionally, rock drill oils delivered by a centralized lubrication system have been used in most pump designs. With ever-increasing environmental concern and reducing spills, many operators are migrating to grease for plunger lubrication.

“This requires a grease that can readily be pumped via the centralized lubrication system, which has relatively long lines leading to the fluid end of the frac pump,” Hunter said. “This requires a grease that pumps well while still providing good lubrication at the packing.”

753

5:45 pm
August 6, 2015
Print Friendly

Put a Good Base Under Your Pumps

0815equipment2We know that a solid foundation is a proven way to increase the mean time between planned maintenance for most types of rotating equipment. But not all rotating-equipment bases are created equal. As reliability expert Heinz Bloch notes in his 2011 book Pump Wisdom, there is no single, accepted way to mount rotating equipment, such as pumps. These units can be mounted in many different ways, some of which are OK to be done “at least cost,” writes Bloch, just as “there are times and places to do it with uncompromisingly high quality.”

Bloch continues that “even a superb pump design will give poor results if poorly installed. A moderately good pump design, properly installed, will give good results.” For Bloch, proper installation means a good foundation in addition to good shaft alignment and the absence of pipe strain. He stresses that “no pump manufacturer designs its pumps strong enough to act as a solid anchoring point for incorrectly supported piping, or piping that causes casings and pump nozzles to yield and deflect.” Also, pumps must be “properly secured to their respective base plates,” he writes, “and these base plates have to be well-bonded to the underlying foundation.”

This ITT Goulds pump is mounted on a polymer concrete baseplate from BaseTek.

This ITT Goulds pump is mounted on a polymer concrete baseplate from BaseTek.

Industry has long depended on cast or fabricated metal for equipment base materials. Today, polymer concrete, introduced to building trades in the 1960s, is emerging as a popular alternative to traditional materials, and offers several benefits. Often referred to as a poly, granite, or mineral cast baseplate, polymer concrete combines well‐defined, grain-sized aggregates with a thermoset epoxy or vinyl ester resin. According to its manufacturers, polymer concrete can be cast to precision tolerances while offering the mechanical properties suitable for most industrial applications. Scott Sapita, co-founder and managing partner of BaseTek, LLC (basetek.com), a Middlefield, OH-based maker of polymer concrete bases, offered the following specific benefits.

—Rick Carter, Executive Editor

Vibration damping: The polymeric matrix of polymer concrete provides damping ratios greater than steel or cast-iron. Polymer bases can effectively minimize vibrations without the need to increase mass size of the component.

Precision mounting: Cast mounting surfaces of most polymer-concrete formulations are typically flat within 0.002 in./ft., which reduces soft-foot and speeds alignment. Also, polymer thermal expansion rates are less than those of cast iron, and the material maintains consistent alignment in a wide range of operating conditions.

Corrosion resistance: Advanced resin systems offer protection from many fluids that may otherwise require an expensive alloy or possibly corrode cast iron or steel. Polymer-concrete systems eliminate the need for additional protective coatings or periodic upkeep and maintenance activities.

Faster installation: Polymer-concrete baseplates will not twist, bend or diaphragm. This eliminates the need for field adjustment during installation. Most designs also incorporate threaded leveling inserts along with a bottom surface ready for adhesion to grouting material without modification or special preparation.

Other benefits: Polymer-concrete materials offer low levels of heat conduction, act as an electrical insulator, are non-magnetic, and resist water absorption. Their mechanical properties are suitable for most indoor-outdoor environments found in the process industries. MT

To learn more about the specification, design, and installation of sound rotating-equipment bases and the benefits polymer concrete models offer, visit basetek.com.

1111

10:14 pm
February 16, 2015
Print Friendly

Smart Pumping Solutions Showcase

0215showredEfficient, Vertical In-Line Pumps

Patterson’s Vertical In-Line HVAC Pumps are available with energy-saving Variable Frequency Drive (VFD) power and with the company’s CloudStat Real-Time, Web-Based HVAC Pump Monitoring. Schneider Electric Altivar 212 VFDs, mounted directly to Patterson’s VIL HVAC pumps, eliminate the need for pressure reducing or throttling valves or inlet guide vanes. The VFDs can also be retrofitted to existing Patterson VIL constant speed pumps. Patterson CloudStat-enabled Vertical In-Line (VIL) pumps provide a browser-based, real-time view of HVAC pumping status. CloudStat is based on one-way cellular technology, installable without IT involvement, and there are no security risks. The system can monitor up to four pumps without the need for an external PLC. CloudStat interfaces easily with most local supervisory level protocols, including LonWorks® and BACNet, and local control is provided using the integral keypad. Alarms are communicated instantly by email or SMS text to customer-defined contacts. The CloudStat system comprises a control enclosure, modem and quarterly subscription fees for software and data services.

Patterson Pump Co.
A Gorman-Rupp Company
Toccoa, GA
pattersonpumps.com

0215showblueSingle-Stage End-Suction Pumps with 5-Year Warranties

According to Pentair, its Aurora 3800 Series single-stage end-suction pumps are designed with maximum interchangeability in mind. Capable of quietly, smoothly and reliably meeting the challenges of increased temperatures and pressures found in a wide range liquid-handling applications today, the 3800 Series now comes with a 5-year warranty. The company says this warranty is an “industry first.”

Aurora Pump
A Pentair Brand
North Aurora, IL
aurorapump.com

0215showdeming

Built-to-Last, Non-Clogging Solids-Handling Pumps

Crane Pumps & Systems says the lines of industrial-fluid-handling pumps offered by its Deming business are known for durability, efficiency and low maintenance. Deming products can be used wherever fluids need to be reliably and efficiently transferred, from general industry to nuclear services. Among them is the family of Demersible Solids Handling Non-Clog pumps for industrial wastewater applications. With their 3″ spherical- solids-handling capability, these heavy-duty units can easily pass materials found in most industrial environments today. Available with flows to over 3250 GPM and heads in excess of 250 ft., Deming Demersibles are designed for continuous operation. A seal-monitoring feature advises when a leak enters the seal chamber. Built-in thermal protection with automatic reset is standard. The manufacturer says these self-lubricated units require only routine inspection.

Deming
A Crane Pumps & Systems Brand
Piqua, OH
cranepumps.com

0215showbellLow-Maintenance End-Suction Pumps

Bell & Gossett (B&G) is introducing a new Series e-1531 close-coupled, footless end- suction pump. According to the company, advanced computational fluid dynamic techniques were used for the comprehensive redesign of the company’s legacy Series 1531 pumps. The new Series e-1531 joins the recently launched Series e-1532 close coupled, footed, end-suction centrifugal pump. A footless volute increases vertical or horizontal mounting options. Its close-coupled design translates into a compact footprint and offers automatic alignment for easy installation. Backward dimensional interchangeability simplifies retrofit installs. B&G also points to the product’s expanded efficiency profile, or “Efficiency Island,” that ensures high levels of efficiency over a wide range of operating conditions. Available in 15 sizes and a variety of configurations, the 1531 e-Series offers levels of customization and flexibility that let these products fit a broad range of system demands. Stainless steel impellers reduce corrosion or degradation potential from varying water quality. True back pullout capability supports low maintenance and service costs.

Bell & Gossett
A Xylem Brand
Morton Grove, IL
bellgossett.com

1803

2:25 am
August 6, 2014
Print Friendly

ITT Opens New U.S. Facility for Advanced Testing and Packaging of Complex, Highly-Engineered Pump Systems

Screen Shot 2014-08-05 at 9.11.04 PMITT Corporation (ITT) recently opened a new addition at its Seneca Falls, NY, manufacturing campus. The  advanced testing and packaging facility  is focused on the highly engineered pumps that are typically used in oil and gas, petrochemical and mining applications. The new facility encompasses more than 89,000 square feet that include office space and approximately 79,000 square feet of product operations.

According to ITT, this $22 million expansion project was driven, in large part, by the growth of the company and its Goulds Pumps brand in the oil and gas industry, which requires complex pump products for use in refinery, pipeline, production and other critical environments. Earlier this year, the company also completed an expansion of its Norman G. Gould Technical Center that houses product engineering and research and development staff at the Seneca Falls site, .

The new building complements an advanced pump factory that ITT opened last year in South Korea. Together, the two facilities coordinate with the company’s network of other manufacturing and packaging sites to serve customer requirements around the world. Focusing on configured-to-order process pumps and engineered pumping systems, the Seneca Falls Operation are supported by a foundry that provides high-quality castings and metallurgy services for the product range.

 

2991

3:44 pm
June 30, 2014
Print Friendly

New Line of Large, Energy-Efficient Motors for High-Torque Industrial Applications


Screen Shot 2014-06-30 at 10.27.50 AMBaldor Electric Co. has introduced a new line of energy-efficient, large AC – GPM Induction Motors. Used in high-torque industrial applications, including pumps, fans, conveyors and compressors, the product line is available in stock ratings 250 – 1000 HP, 2300/4000 Volt, totally enclosed (TEFC), fan-cooled, foot mounted designs.

Features and benefits of the stock-motor lineup include:

  • Cast iron frame, end shields and inner caps
  • Insulated opposite drive end bearing
  • Drive end slinger
  • 100 ohm platinum winding RTDs
  • Provisions for bearing RTDs
  • Space heaters
  • Suitability for use on VFD 2:1 CT, 10:1 VT

The GPM line of large AC motors can also be ordered as custom items, ranging from 250 – 1500 HP, 460, 575, 2300/400 Volt, TEFC, in foot-mounted designs.

According to Baldor, stock, as well as custom units in this product family, can be used on variable frequency drives.

Navigation