Archive | Management

34

7:05 pm
February 16, 2017
Print Friendly

Silicon Valley Company Joins the Predictive Maintenance Party

predictive maintenance platform

Source: Element Analytics

Silicon Valley-backed Element Analytics formally announced their industrial software analytics solution, Element Platform, to the market last month. The San Francisco-based Element Analytics is taking aim at the oil and gas, chemical, utility and mining industries while partnering with OSIsoft and Microsoft’s Partner Network.

The platform and the solution is a good fit for those industries, as those fields tend to rely on proprietary automation and equipment platforms that need optimization. Oil and gas, specifically, moved their strategy from offshore to their current installed base to find profitability and most producers are understanding the need for infrastructure improvement. From the press release, the Element Platform works with OSIsoft’s technology in moving unstructured, operational sensor data from “silos” to a cloud-based analytics platform, where asset models help predict downtime for physical equipment.

Related Content | How to Start a Predictive Maintenance Program

“Industrial operators face no shortage of data, says David Mount, Kleiner Perkins’ Green Growth Fund partner and co-founder of Element Analytics. Mounds of data exist, but getting the data to a ready state is core to making it analyzable, predictive and actionable.”

Predictive maintenance technology has been slow to be adopted due to operational and production conflicts, but recent IIoT solutions live on separate platforms. This allows for control platfom updates, like security patches to occur, while not interrupting asset management programs.

The Element platform also uses Microsoft Azure and Cortana Intelligence for the cloud-based analytics.

For more information, visit www.elementanalytics.com

1601Iot_logoFor more IIoT coverage in maintenance and operations, click here! 

29

8:11 pm
February 10, 2017
Print Friendly

Uptime: Problem Solving — A New Competitive Challenge

bobmugnewBy Bob Williamson, Contributing Editor

What do robots, integrated automation systems, the Industrial Internet of Things (IIoT), ISO 55000 Asset Management Standard, TPM, RCM, Lean Manufacturing, and re-shoring of jobs have in common? Yes, they’re here, now, and defy many traditional ways of managing a business. But there’s more. The rapid implementation of these performance-improvement technologies and solutions has also accelerated the demand for systematic problem solving.

In my opinion, problem solving is the new competitive challenge thrust upon us by global competition, shortened product cycles, and the explosive adoption rate of integrated and interdependent technologies. The big question, with regard to remaining competitive, is how do we develop a problem-solving workplace?

Let’s start with the definition of a “problem.” According to businessdictionary.com, the word means “a perceived gap between the existing state and a desired state, or a deviation from a norm, standard, or status quo.” Based on that definition, for a problem to be a “problem,” there must be a standard from which we can determine if there is a problem, i.e. something defining the normal condition. This is where standard work (a defined way for performing a task) comes in. The same goes for reliability standards (equipment doing what it’s supposed to do), quality standards (defect-free products), and safety standards (injury-free workplaces). Given the fact that problems are deviations from expectations, identifying and solving them without standards can fuel guessing games of chasing false problems.

Determining, then implementing, the correct solution and proving its success, is the end goal.

Determining, then implementing, the correct solution and proving its success, is the end goal.

Before we can even begin thinking about problem-solving tools, however, we must consider the human side of the issue: Does a person have a problem-solving aptitude and, if so, what type? Here are several styles you might have encountered:

“Ostrich” approach. Some view problems as negatives, as opposed to opportunities for improvement. They tend to avoid considering solutions: “We can live with this problem, if we just . . . ”

“Denial” approach. Some people routinely fail to recognize or admit that the problem exists: “That’s not a problem. It happens all the time.”

“Always did it that way” approach. For some people, problem solving is more intuitive than systematic and structured. Past practices tend to frame their solutions to a problem: “Let’s try what we did the last time something like this happened.”

“Remove and replace” approach. Some specialize in the trial-and-error method (some solutions work, others don’t): “I’ve replaced most of the parts in the unit and it finally started working.”

“Yes, but” approach.  Someone will miss the problem entirely, yet already be working on a solution: “I hear what you’re saying, but here’s what we need to do.”

“Work around” approach. Some people will look for ways to work around the problem rather than look for the cause: “I know it quit working, so we just put in a by-pass circuit to keep it running.”

“What do we know” approach. The most successful problem solvers take time to better understand the problem before beginning a systematic process of identifying options to pursue: “What happened? Was anything changed here before the problem occurred? Who was there at the time?”

Problem solving is more than RCA

Analyzing problems to determine their causes is a scientific discipline, of which there are a variety of proven processes. One key point here is “discipline.”

Root-cause analysis (RCA) not only requires a proven step-by-step process, it also depends on the human-performance discipline to adhere to that type of process—a standardized problem-solving approach embraced by the organization.

Another phase of problem solving is arriving at and establishing solutions that prevent a problem or its effects from recurring (or continuing). Arriving at a solution can also be an iterative process of trying potential solutions and analyzing the outcomes until a sustainable and affordable solution is determined.

RCA is more than problem solving

Whenever I think about problem solving, I’m reminded of my conversation with auto-racing’s Ray Evernham nearly 20 years ago. At the time, he was still serving as crew chief for Jeff Gordon, who, late in the 1992 Winston Cup season, had begun driving for Hendrick Motorsports, a top-level NASCAR race team.

As a consultant to the organization, I was focusing on Hendrick’s use of root-cause failure analysis in its problem-solving process (a very robust and rapid one). How delighted I was when Evernham explained that the team also performed root-cause “success” analyses, i.e., analyzing what went unexpectedly right, whether it was a win, an ultra-fast pit stop, or a zero-failure race. Wow.

A root-cause success analysis can turn the tables—from eliminating problems to repeating successes. Seeking answers to “what can we do consistently better,” which is a critical success factor in motorsports, can be just as valuable in plant and facility operations.

Troubleshooting is not necessarily solving problems

In the world of industrial and facilities maintenance, troubleshooting varies widely. At times the troubleshooting process involves removing and replacing parts one at a time until the defective one is located. (Not too scientific, but a common practice.)

Scientific troubleshooting requires a troubleshooter to truly understand the inner working of a device that is harboring the fault. That includes understanding components, systems, circuits, hardware, software, and firmware.

Again, the more the technician understands the device the more efficient and effective the troubleshooting process becomes.

But troubleshooting is only half the battle. Determining, then implementing, the correct solution and proving its success, is the end goal.

(EDITOR’S NOTE: For some troubleshooting tips, see this month’s feature “Boost Troubleshooting Skills at Your Site.”)

Problem-solving mindsets

The ability to troubleshoot, perform root-cause analyses, and solve problems (or improve performance) requires disciplined human performance, i.e., adherence to proven processes.

Furthermore, those doing the problem solving must have the aptitude and ability to think through the variables in the problem-solving process and the associated equipment conditions. They must be able to understand what a pre-fault (or normal) conditions are and must be able to recognize fault conditions.

In my generation, we grew up taking things apart. Fixing things. Building things. We had access to tools and looked for things to do with them.

Shop classes and working on cars and other things around the house or farm helped build our confidence and respect for how “stuff” worked. Sometimes we got hurt (nothing serious); sometimes we damaged things. But that’s how we learned many of our skills.

Over time, many of us developed mechanical aptitudes along with a variety of abilities to put them to work. A solid mechanical aptitude and an understanding of basic cause-and-effect relationships are central to problem solving.

Sadly today, we’re witnessing the impact of exposing two generations to few, if any, shop classes. Individuals entering the workplace without problem-solving aptitudes and abilities are at a severe disadvantage. So are our industries. Growing effective problem solvers is becoming increasingly difficult in today’s plants and facilities.

Building a problem-solving mindset (or paradigm) in your organization takes people with the right skills and lots of practice. It also calls for a consistent and systematic approach to solving problems.

And, one more thing: A problem-solving mindset must be set from top management as a way of doing business. In the meantime, try testing your own skills with Mind Tools’ “How Good is Your Problem Solving?” online assessment. MT

Bob Williamson, CMRP, CPMM and member of the Institute of Asset Management, is in his fourth decade of focusing on the “people side” of world-class maintenance and reliability in plants and facilities across North America. Contact him at RobertMW2@cs.com.

30

7:46 pm
February 10, 2017
Print Friendly

SAP Tips and Tricks: Assign HR Mini Masters to Work Centers

randmBy Kristina Gordon, DuPont

Tracking the hours that each maintenance employee spends on a job is essential to understanding the total cost and reliability of your equipment. An SAP HR Mini Master is primarily used for work-order time confirmation. Mini Masters are set up for everyone in your maintenance organization, then assigned to a work center. The resulting data will show you the work-center capacity down to the employee level. MT

Q: How do I create an HR Mini Master?

A :  Set up transaction PA30:

1. Click on the create icon. 1702rmcsap07p
2. Enter start date.
3. Select time recording (HR Mini Master).
4. Enter position type.
5. Enter plant code.
6. Click the save button.
7. Create Personal Data Screen appears. Enter employee name.
8. Click save.

You have now created an HR Mini Master.


Q: When do you assign an HR Mini Master to a work center?

A: HR Mini Masters are assigned to a work center when you want to schedule work at the individual level charge time to work orders using time confirmations for internal employees and contractors.


Q: How do I assign an HR Mini Master to a work center?

A: Use the following transaction IR02 steps:

Step 1

Step 1

Step 2

Step 2

Step 3

Step 3

Step 4

Step 4

Step 5

Step 5

Step 6

Step 6

Kristina Gordon is SAP Program Consultant at the DuPont, Sabine River Works plant in West Orange, TX.  If you have SAP questions, send them to editors@maintenancetechnology.com and we’ll forward them to Kristina.

81

6:58 pm
February 10, 2017
Print Friendly

Obsolete Inventory? Deal with It.

randmObsolete. Everyone who has ever purchased a computer knows what that means. It describes your computer within a month or so of your purchase.

When the discussion turns to a plant’s MRO inventory, Roger Corley of Life Cycle Engineering (LCE.com) says it’s an entirely different type of conversation. That’s because some items are never used, yet continue to collect dust and take up valuable storeroom real estate. He has some tips for dealing with this obsolescence, starting with how to identify it.

Identifying obsolete MRO inventory, in Corley’s opinion, is the easy part, especially if a good set of parameters has been established. Most large storerooms, he says, apply these factors:

• items with movement (receipts or issues) in 3+years

• items that aren’t identified as critical spares

• items that aren’t on an active asset’s BOM (optional).

Up-front planning can ease your site’s identification and disposal of obsolete MRO items.

Up-front planning can ease your site’s identification and disposal of obsolete MRO items.

With these parameters in place, most inventory systems can quickly generate a list of obsolete items—something that should be done annually to make it easier to manage the following years’ lists.

According to Corley, the more difficult (politically charged) challenge associated with obsolete MRO items is their disposal. That’s why storeroom managers must be involved in a site’s budget-preparation process. For one thing, there will need to be a line item in the budget for disposal of inventory. In addition, since writing off unused inventory can be damaging to a company’s bottom line, it’s crucial to prepare (and obtain approval) for doing so ahead of time.

Another issue involves disposing of what personnel believe “belongs” to them. As Corley put it, “I’ve seen maintenance supervisors and managers dig in their heels when a storeroom manager begins removing what they think of as ‘their’ MRO items.” His advice to storeroom managers is to take great care to ensure important items that might have been left off the list of critical spares aren’t eliminated from inventory. Some front-end work on the part of storeroom managers can smooth the process. Such work includes:

• investigating the history of the proposed item considered for disposal

• grouping items into specific operating areas on site and scheduling meetings to review (tip: buy lunch to get participation)

• allowing area managers to present a case for inclusion of a critical spare and being prepared to offer solutions such as vendor-stored inventory.

Once a list is developed and agreement among stakeholders reached, the obsolete items must be removed from inventory and disposed of. Corley notes that this phase will be less painful in plants that have investment-recovery departments. Smaller operations will sometimes list the obsolete inventory on bidding sites or, in the case of metals, recover money by scrapping items.

“Either way,” he cautioned, “sites shouldn’t expect to get anywhere near what the initial investment was when the items were purchased. In the case of scrap, they’ll recover pennies on the dollar. As for companies with multiple plants, it’s important for sites to check with other locations regarding possible use of obsolete items before disposing of them.”

To Corley’s way of thinking, dealing with obsolete MRO inventory, including identifying and disposing of it, needn’t be viewed as a daunting task. “That is,” he said, “if the process is managed properly and homework is done before the items are removed.”  MT

—Jane Alexander, Managing Editor

Roger Corley is a Materials Management subject-matter expert with Life Cycle Engineering, Charleston, SC, and a certified facilitator for Maintenance Planning and Scheduling with the Life Cycle Institute. For more information, email rcorley@LCE.com and/or visit LCE.com.

30

9:01 pm
February 9, 2017
Print Friendly

On The Floor: Real-World Views on ISO 55001

By Jane Alexander, Managing Editor

Has your organization adopted the ISO 55001 Asset Management Standard, and why or why not?

Has your organization adopted the ISO 55001 Asset Management Standard, and why or why not?

Inquiring minds want to know: This month we wanted to gauge the impact that the ISO 55000 Asset Management Standard (specifically ISO 55001) is having on MT Reader Panelist’s operations (or the operations of their clients/customers). Despite the buzz about this Standard (including regular information in our pages), our Panelists’ responses reflect a mixed bag of awareness and adoption. We asked them to reply in detail to these questions:

• Were they and their organizations (or their clients/customers) aware of ISO 55001 and did they expect the organizations to adopt this Standard?

• Pursuant to ISO 55001, did everyone (all departments) in their organizations (or those of their clients/customers) understand the role of Maintenance and vice versa, as well as understand how they should all work with each other?

Here, edited for brevity and clarity, are several responses we received.

College Electrical Lab, Manager/Instructor, West…

We have reviewed ISO 55000 (55001, 55002) for possible adoption. The system we use for asset management is part of our CMMS program. We might not adopt ISO 55000 until we complete a full ROI evaluation. Weighting the costs against the benefits is a big issue with us. Will this ISO Standard add to our bottom line, customer service, product quality, and employee benefits? An evaluation team is working on it now.

Our maintenance departments are considered a profit center for the overall organization. A maintenance representative attends all meetings (executive, customer, engineering, sales, planning, etc.). Any maintenance person can add input to support our growth and quality of operations.  The ISO 55000 Standards are said to improve planning, support risk management, align the processes, and improve cross-disciplinary teamwork.  If they are highly usable, we will adopt.

Industry Consultant, West…

None of my current clients have any interest in ISO 55001. Some know a bit about it, but they aren’t interested in moving forward. When ISO 55000 was first introduced, one client thought it [the company] would want to be on the leading edge of the movement [to adopt the Standard], but was never able to obtain the funding or boardroom support to take it on.

Engineer, Process Industries, Southeast…

There is very little or no awareness of ISO 55001 [at our site], and there’s been no discussion about it. We are ISO 9001 and ISO 14001 certified, and these Standards seem to draw all of our attention and resources.

Our departments, for the most part, work well with each other and understand their own roles and those of others. But there’s still a tendency to ask Maintenance to do everything that Production or other departments cannot or will not do.

Industry Consultant, International…

The ISO 55000, 1 and 2 series of Standards are relatively new, say compared to the ISO 9000 or ISO 14000. As a consultant, I know my clients are aware of the ISO 55000 series, but they’re still trying to implement maintenance and reliability best practices on lubrication, planning, work control, OEE (overall equipment effectiveness), etc.

While ISO 55000 is built around Asset Management principles, in answer to the first question, my clients aren’t ready to adopt something that doesn’t show a solid ROI on the initial costs. The process is quite rigorous.

As for the second question, I’ve noticed that Maintenance often isn’t fully aware of production requirements and, with regard to other departments, tends to work in a “silo.” Goals are frequently short-term and counter-productive in nature.

I’ve also noted that equipment “ownership” by Production operators supports Maintenance in routine work such as basic lube, minor adjustments, and inspections. I’ve even seen Operator nameplates on equipment showing the pride that the “owners” of units take in their machines or processes. Some operators will also include a mechanic or electrician as “Co-Owner.” These owners are very proud of their equipment’s performance, uptime, and machine condition. (One of my clients took this concept to very high level and generated excellent results in productivity, safety, and cost control.)

In my opinion, since Asset Management is a key to economics and bottom-line improvements. ISO 55000, 1 and 2, will eventually be adopted by more organizations. However, as with ISO 9000, Quality Measurement, it will require a bit more time and training [for ISO 55000] to take hold.

Plant Engineer, Institutional Facilities, Midwest…

Personally, I’m not particularly familiar with ISO 55001 and not sure if any of our senior managers know about it.

Regarding the second question, our institution has always held meetings with all maintenance and management departments to keep everyone involved with any ongoing, new, or future projects. Each department has its own type of maintenance, and the type used depends greatly on cost, man/woman power, and order of importance.

Reliability Specialist, Power Sector, Midwest…

Yes, our organization is fully aware of ISO 55001. As with most organizations in the power industry, we are heavily regulated by the PSC, NREC, FERC, insurance carriers, and other entities. Until one of them mandates compliance to ISO 55001, most organizations won’t make the investment.

All departments in our organization understand their own roles and their responsibilities to each other. Each department has its own mission statement, and partnership agreements have been formed and documented with one another.

Maintenance & Reliability Specialist, Engineering Services Provider, South…

My company is very aware of ISO 55001 and in fact had a representative on the team that developed the Standard. Our [my particular] customer is only aware of it through discussions with us. As this client is a government agency that hasn’t been required to adopt ISO 55001, at this point, I don’t believe it will do so in the near future. Due to a tight budget, I don’t believe the client sees the value in adopting a new ISO standard, since it already is involved with ISO 9001.

Given the fact that we are a maintenance and operations service provider, I believe that all departments within our organization understand the role of Maintenance. We have made a concerted effort to have as many people as possible take the CMRP exam after completing our introductory asset-management course. This ensures that we can all talk the same language and equally understand our customers’ needs in the maintenance arena. MT

About The MT Reader Panel

The Maintenance Technology Reader Panel included approximately 100 reliability and maintenance professionals and suppliers to industry who have volunteered to answer monthly questions prepared by our editorial staff. Panelist identities are not revealed and their responses are not necessarily projectable. Our panel welcomes new members. To be considered, email your name and contact information to jalexander@maintenancetechnology.com with “Reader Panel” in the subject line. All panelists are automatically included in an annual cash-prize drawing after one year of active participation.

14

8:43 pm
February 9, 2017
Print Friendly

Establish a Problem-Solving Organization

By Bob Williamson, Contributing Editor

The ISO 55000:2014 Asset Management Standard could play a major role in industry in the coming years. Keep up to date with our ongoing coverage of this Standard at maintenancetechnology.com/iso55k.

The ISO 55000:2014 Asset Management Standard could play a major role in industry in the coming years. Keep up to date with our ongoing coverage of this Standard at maintenancetechnology.com/iso55k.

Asset management, as defined in the ISO 55000:2014 Standard, spans the entire lifecycle of an asset. While this standard applies to many asset forms, from our perspective as reliability and maintenance professionals, the main emphasis relates to the physical assets of a business.

In ISO 55000, an asset is defined as “. . . an item, thing, or entity that has potential or actual value to an organization.” I’ve made the case in past columns, however, that highly skilled employees (such as maintenance technicians) should also be considered assets because they represent potential and actual value through developed and deployed skill sets.

There’s also a lifecycle element in the development of a qualified maintenance technician, beginning with aptitude and core-job competence. At some point, due to aging out, retiring, or the inability to perform specified work, technicians’ value-adding qualities fade.

That holds true for any highly skilled decision maker, including engineers, buyers, chief executives, and project managers. They all reflect potential or actual value to the organization. Thus, their lifecycle skill sets must be honed to contribute to achieving asset-management goals and, by extension, organization goals. Problem solving is one of those skill sets. In fact, it’s a primary and pervasive requirement in an asset-management system.

According to ISO 55000, “The management system elements include the organization’s structure, roles and responsibilities, planning, operation, etc.”

One of the major characteristics of an asset-management system is that it must assure the ability of the organization’s key stakeholders at various levels to identify and solve problems when an asset deviates from the normal or expected performance. Problem solving must then be a key responsibility of specific roles. In turn, a problem-solving mindset is essential within an asset-management system to identify risks that could affect the organization’s goals.

An organization’s problem-solving mindset plays a key role throughout all phases of an asset’s lifecycle.

An organization’s problem-solving mindset plays a key role throughout all phases of an asset’s lifecycle.

The lifecycle perspective

The intent of ISO 55001 is to set the requirements for a system to manage selected assets throughout their lifecycle. Asset lifecycles begin in the design stage, and progress through engineering and procurement, installation and startup, and operations and maintenance, to decommissioning and disposal.

Each phase of an asset’s lifecycle involves people in a variety of roles and responsibilities, and differing disciplines and priorities. While the phases are sequential, they must remain highly interrelated and interdependent when it comes to assuring reliable performance of the asset. Requirements of the ISO 55001 Asset Management System assure that the organization’s goals will be met. For a functioning asset-management system, there must be an organization-wide problem-solving mindset that translates to problem identification and mitigation responsibilities within each lifecycle phase of the assets.

In the earliest phases, this problem-solving mindset must deal with anticipated and potential problems and their mitigation. Later, in the installation phases, the problem-solving mindset must deal with physical-asset damage and installation errors. During the operation and maintenance phases, the problem-solving mindset must deal with proactive problem prevention. Finally, in the decommissioning phase, the problem-solving mindset must deal with asset removal and disposal hazards.

Organizing for asset management clearly requires a problem-solving mindset within the organization. Consider this mindset a fundamental skill set to be deployed in a consistent and systematic manner. MT

Contact Bob Williamson at RobertMW2@cs.com.

Navigation