Archive | Asset Management

46

8:19 pm
April 13, 2017
Print Friendly

Uptime: Aligning ‘Our’ Goals With Business Goals

bobmugnewBy Bob Williamson, Contributing Editor

Cut expenses. Boost performance. Those are among the goals of many businesses. Frequently, though—too frequently, in fact—maintenance managers find themselves between a rock and a hard place: improving maintenance while reducing costs.

By its very nature, the maintenance function is a business expense. As an extreme, we could eliminate the entire maintenance budget as a cost-cutting measure. Having done that, the business would suffer under significantly more expensive run-to-failure equipment-management practices, leading to increased costs of repair and lost revenues from unpredictable/unplanned equipment and facilities downtime.

Maintenance can be defined as “actions for sustaining a desired level of equipment performance.” From a maintenance professional’s perspective, the big picture is more about sustaining desired levels of business performance.

Let’s be clear, we could be discussing the maintenance department as we explore the principles of aligning maintenance with business goals. But, when reviewing the scope of maintenance work, we must think and look well beyond the maintenance department and consider the maintenance function, regardless of the organization(s) performing the work. This is a crucial distinction when it comes to the alignment of goals.

Typically, the maintenance department is perceived as the party that’s responsible for the health and well being of equipment and facilities. Yet, many (if not most) of the causes of unhealthy and poorly performing equipment and facilities go well beyond the scope of the maintenance department. As a result, maintenance basically gets to address the symptoms, not the true causes, of problems.

Efficiency vs. effectiveness

The noted business-management consultant, author, and educator Peter Drucker defined efficiency and effectiveness this way:

• Efficiency: Doing things right—able to accomplish something with the least waste of time and effort. (Focuses on process).

• Effectiveness: Doing the right things—producing the intended or expected result. (Focuses on results, outcomes, throughput).

Just because maintenance is performed efficiently does not necessarily mean that it is effective.

NASCAR race-team pit crews offer an excellent example. An efficient pit stop can be performed in record time. The pit crew’s work processes are highly efficient. But, if they always change four tires while only two tires are showing signs of performance-handling wear, pit stops are ineffective.

In the business context of auto racing and pit stops, it’s not the responsibility of the pit crew (let’s call it the “maintenance crew”) to determine how many tires to change. The crew chief (let’s call him or her the “maintenance manager”) reviews previous tire-performance data, compared with vehicle handling, as reported by the driver, and determines the tire-changing tasks to be completed during each pit stop.

After all, the goal of a race is not only flawless work execution (efficiency) by the pit crew, but also performance of pit stops in a manner that ensures the business goal of winning the race is a top priority (effectiveness).

All too often, we focus primarily on measuring and improving maintenance efficiency, including, among other things, preventive-maintenance (PM)-schedule compliance, mean time to repair, actual hours/planned hours, planning variance, and preventive/predictive-maintenance (PM/PdM) yield. While activities (or actions) associated with these measurements and improvements lead to excellent maintenance practices, they must be balanced with maintenance effectiveness.

Aligning maintenance functions with business goals assures maintenance effectiveness. Maintenance actions then contribute to the goals of the business.

This business line of sight reflects alignments from the upper-most purposes of an enterprise, down to plant-floor work execution.

This business line of sight reflects alignments from the upper-most purposes of an enterprise, down to plant-floor work execution.

Line of sight

I’ve discussed asset-management standards and the importance of aligning an organization’s work processes with their goals in numerous Maintenance Technology columns over the years. Both the PAS-55:2008 Asset Management Specification and ISO55000: 2014 Asset Management Standard refer to the importance of aligning asset-management practices to the goals of the business. PAS-55 referred to this alignment as a “line of sight” designed to assure the effectiveness of such practices.

Let’s use the chart on p. 6 to drill down through a typical line of sight, from the upper-most purposes of an enterprise, all the way to work execution on the plant floor. Since business terminology varies widely, here are my clarifications and some examples for this diagram:

• Business Opportunity (our market/customers/requirements)

• Shareholder/Owner Expectations (return on the investment)

• Organization’s Mission-Vision (who we are and where we want to be)

• Strategic Themes, Policy Statements (guiding principles)

• Strategic Business Plan (what and why)

• Business Goals (what we want to accomplish)

• Key Performance Indicators (measuring what is critical: financial, customer, process, people, and/or regulatory)

• Objectives/Strategic Initiatives (what and how)

• Organizational Structures (our divisions/cost centers/departments/shifts/crews)

• Job Roles & Responsibilities, Job Requirements (who, what, where, when)

• Work Processes, Methods, Procedures, Systems (how work should/shall be performed)

• Work Execution (performance management—how well).

Top-down/bottom-up

There are two ways to approach line-of-sight alignment. Most organizations view it from a top-down perspective to define their respective business models and what they should measure to determine whether they’re on a successful path. Their KPIs (key performance indicators) often provide necessary measures of success.

From a bottom-up perspective, we see Work Execution reflecting the fundamental actions required to meet the Business Goals as measured by the KPIs. The two paths (top-down and bottom-up) meet in the middle—aligned toward the same KPIs.

Connecting and aligning Work Execution to the KPIs are some of the most critical links in the process. The KPIs can be made actionable by linking to the appropriate Equipment Utilization Losses (see Uptime, March 2017).

Specific Objectives or Initiatives are determined from the KPIs; Organizational Structures are defined; specific Job Roles & Responsibilities (in various departments) are defined; and Work Processes are developed to define how work is to be performed. All of this leads to the flawless Work Execution that’s necessary to achieve the Business Goals (as in the pit crew example).

Seeking alignment

Aligning the work culture (an organization’s behaviors) with a line of sight to the organization’s business goals begins by communicating the Business Opportunity and how the organization needs to pull in the same direction to take full advantage of it.

Linking maintenance to business goals is only one of many alignments that must exist in successful enterprises. Thus, we must remember that a maintenance department alone cannot effectively maintain equipment and facilities. More and more, we’re learning that the maintenance function is a team sport that requires multiple disciplines (players) brought in at different stages in the life cycle of a physical asset.

Paying attention to maintenance-work processes and efficiency are good things to measure. It’s when we align the outcomes of those processes and efficiencies with business goals that maintenance truly becomes effective in a business model. MT

Bob Williamson, CMRP, CPMM, and member of the Institute of Asset Management, is in his fourth decade of focusing on the “people side” of world-class maintenance and reliability. Contact him at RobertMW2@cs.com.

13

6:46 pm
April 13, 2017
Print Friendly

Guide Helps Measure Asset-Management Maturity

The ISO 55000:2014 Asset Management Standard could play a major role in industry in the coming years. Keep up to date with our ongoing coverage of this Standard at maintenancetechnology.com/iso55k.

The ISO 55000:2014 Asset Management Standard could play a major role in industry in the coming years. Keep up to date with our ongoing coverage of this Standard at maintenancetechnology.com/iso55k.

By Bob Williamson, Contributing Editor

The asset-management journey is rich with ideas, opinions, and recommendations. As organizations focus on life-cycle asset management, many performance breakthroughs have been achieved. It’s wise to continue to learn from these asset-management examples and tools as they become available.

A quick read of the ISO 55001-2014 Asset Management Standard offers detailed descriptions of minimum requirements for an effective asset-management system, rather than a comprehensive checklist. Plant leaders, though, could benefit from a more practical guide to asset-management excellence.

The Institute of Asset Management (IAM, London, theiam.org) has compiled an insightful document that helps readers understand the subjects relating to an asset-management system, as codified in ISO 55001, and to the overall asset-management discipline. Titled Asset Management Maturity Scale and Guidance, it can serve as a progress guidance tool in an organization’s asset-management journey.

Screen Shot 2017-04-13 at 1.41.00 PM

At the heart of the IAM publication is the “Asset Management Landscape” (2nd Edition). Assembled by the Global Forum on Maintenance and Asset Management (GFMAM, Zurich, gfmam.org), it provides a broad overview of the asset-management discipline and a structured body of knowledge spread across 39 different, yet related, subjects, organized into six groups:

• Strategy & Planning
Asset Management Decision Making
Lifecycle Delivery
Asset information
Organization & People
Risk & Review

The Asset Management Maturity publication aligns the 39 asset-management subjects with a six-level maturity scale. An invaluable tool for assessing an organization’s asset-management progress, the document also offers specific recommendations for improvement. The accompanying table summarizes this maturity scale. It can be used as a template with each of the 39 subjects.

Each subject spans two pages in the Asset-Management Maturity publication. The first page is organized with the six maturity levels (0 to 5), shown in the summary table here, with additional maturity definitions.

The second page offers important insights into achieving excellence in the asset-management journey. Each subject is put into context with criticality, scale, and complexity to help define Level 5 maturity. Related subjects from the list are also referenced. Notes and illustrations from the developers also are included to help you on the journey to asset-management excellence. MT

robertmw2@cs.com

References

ISO 55001-2014 Asset Management Standard, (1st Edition), Jan. 2014. The International Organization for Standardization (iso.org)

Asset Management Maturity Scale and Guidance, (Version 1.1), June 2016. Institute for Asset Management (theIAM.org)

“Asset Management Landscape,” (2nd Edition), Mar. 2014. Global Forum on Maintenance and Asset Management (GFMAM.org)

124

8:52 pm
March 16, 2017
Print Friendly

Intelligent Water Making Strides towards Predictive Analytics

EXCEL XR metering pumps are designed for the specific chemical pumping requirements of municipal and industrial water treatment.

Last week, I ran across a Smart Water spending forecast from Bluefield Research and this week there’s an interesting post from Jim Gillespie, co-founder of Gray Matter Systems, a system integrator for cloud solutions and predictive analytics. All signs point to an increased spend in this sector for pump and motor sensors, but where will this investment come from?

According to Gillespie and his post on TechCruch, utilities may be able to sell “solutions” to other wastewater operations like the power industry has done. Gillespie cited how the District of Columbia Water and Sewer Authority has commercialized their intellectual property, giving them a new revenue channel. The water district is commercializing their water ammonia versus nitrate algorithm and selling it other treatment plants, according to Gillespie.

>> More || Smart Water Infrastructure Continues to Grow, but Real Challenges Persist

As I noted last week, new investment dollars are hard to come by but there’s are a lot of new use cases in the wastewater space, see below:

Another IIoT development, a new SaaS application that’s set to launch later this month, will calculate wastewater clarifier tank performance — providing quick analysis on a critical step in the wastewater process. The tool, called ClariFind, alerts utilities as they’re getting close to a failure before they experience it. ClariFind will predict when sludge will overflow and be released. This kind of problem causes EPA issues and fines that can run in the millions of dollars. It will also be able to predict a thickening failure, which is when the effluent doesn’t settle correctly and creates a costly sludge blanket in the tank. ClariFind is just one part of a water operations suite of productivity enhancers — solutions as a service.

Read the Full Post on TechCrunch >>


1601Iot_logoFor more IIoT coverage in maintenance and operations, click here! 

591

2:58 pm
March 13, 2017
Print Friendly

Keep Stored Gear Reducers Service Ready

When gear reducers and other capital spares are improperly prepared for storage, their service readiness can be seriously compromised.

When gear reducers and other capital spares are improperly prepared for storage, their service readiness can be seriously compromised.

Are your statically stored gear reducers service ready? That’s the first of several questions from Dillon Gully of Motion Industries (headquartered in Birmingham, AL, motionindustries.com). He has good reason for asking. In conducting borescope inspections of statically stored internal-gear reducers for customers, Motion Industries personnel discovered as many as one-third of these assets sitting on shelves in a failed state.

Next questions: Are you willing to gamble the OEE (overall equipment effectiveness) and profitability of your facility on gear reducers and, for that matter, other capital spares that might not be service ready? What would you tell your boss if a critical spare were to fail within mere hours? Think this scenario doesn’t apply to you? How can you be sure? Gully offers some advice for achieving peace of mind.

— Jane Alexander, Managing Editor

Effective management of capital spares involves up-front identification of these assets and making sure they are in service-ready condition prior to preparing them for long-term storage. Unfortunately, many operations don’t follow through on this process once purchased units arrive on site. According to Gully, these steps are the only way to support the reliability of stored spares.

Capital spares can be defined as any item that is critical to production, promotes safety, decreases downtime, and/or prevents environmental issues. Gear reducers certainly qualify. The best way of verifying that these assets won’t fail as soon as they’re put into service is to inspect them before they are stored away—perhaps for years. Minimally invasive borescope inspections are a particularly good inspection method.

In a borescope inspection of a gear reducer, a camera scope visually inspects the condition of bearings, gearing, and internal components. The procedure can be accomplished through a plughole, which prevents contamination of an asset, if it is, indeed, ready for service. (Compared to the cost of replacing a failed bearing, costs associated with borescope inspections are also minimal.)

randmStorage planning

While information gleaned from borescope inspections can be used to confirm service readiness—or help identify steps for making a spare service ready—it can also help determine how to prevent these units from improper storage.

Corrosion, i.e., rust and contamination, are two, of many, causes of failure in gear reducers. When borescope inspections identify the presence of these failure modes, steps can be taken to correct them before the equipment is put into storage, as well as prevent those problems from recurring during storage.

Once a plan to prevent failures in stored spares is developed and implemented, it should be consistently followed. Every unit that will be stored, for whatever period of time, should be carefully protected. Preventing rust and contamination is a great start in protecting asset reliability and, thus, ensuring service readiness.

An ongoing process

Keeping stored spares in service-ready condition requires management accountability. Someone must be assigned responsibility for these assets, and expectations should be clear and realistic. It’s the responsibility of that designated person to ensure all spares are properly prepared and maintained. Identifying failed spares and bringing them back to service-ready condition is an ongoing process. As Dillon Gully emphasizes, “It should not be done one time and then forgotten.”

This plan for reliability can lower the probability of failure and bring a welcome degree of certainty regarding your stored gear reducers and other capital spares. MT

Working as an analyst for Motion Industries’ service center in Pensacola, FL, Dillon Gully has been conducting vibration and borescope inspections and managing capital spares for three years. For more information on these topics, visit motionindustries.com or bearings.com.

115

12:45 pm
March 8, 2017
Print Friendly

Smart Water Infrastructure Continues to Grow, but Real Challenges Persist

smart water markets

The US (39 projects) and the UK (21 projects) were the most active smart water markets during the last half of 2016. Source: Bluefield Research

By Grant Gerke, Contributing Writer, IIoT

A new report from Bluefield Research suggests that a massive smart infrastructure buildout is coming to the water and wastewater industry in the next eight years, with more than $20 billion to be spent in metering, data management, and analytics.

As devices, sensors and cloud solutions become cheaper over the next ten years, there will be a solid investment in this space but the research rings a little hollow to me. The U.S. industry, in particular, is aging and resources are limited but the big challenge may be in the area of system integrators. In a feature article from a couple years ago, I interviewed Roger Knutson, public works director at the biggest water and wastewater department in Minnesota. For Knutson, the real challenge was in overseeing software and plant monitoring upgrades to multiple plants with his own internal staff. System integrators weren’t in the budget.

“So, the real challenge is to maintain the different technologies during that timeframe,” says Knutson. We’re talking about the new and old versions of software running side-by-side at different plants or just at different plants.”

Even the Bluefield research report says that “a significant hurdle will be integrating legacy systems with new software platforms.” However, the challenge may be workflow processes, the less glamorous side of the asset management and IIoT narrative.

Other highlights from the research include:

• Halving non-revenue water– leaks and billing errors– and reducing energy consumption from 20% to 40%.

• The smart water sector is expected to scale to $12 billion in the US and $11 billion in Europe by 2025. Other hotspots for smart water activity include Australia, Singapore and Israel, where water stress and established utility network operators are more receptive to advanced technology adoption.

• European utilities are at the forefront of smart water in terms of operational solutions, while the US leads in terms of metering.

1601Iot_logoFor more IIoT coverage in maintenance and operations, click here! 

186

7:05 pm
February 16, 2017
Print Friendly

Silicon Valley Company Joins the Predictive Maintenance Party

predictive maintenance platform

Source: Element Analytics

Silicon Valley-backed Element Analytics formally announced their industrial software analytics solution, Element Platform, to the market last month. The San Francisco-based Element Analytics is taking aim at the oil and gas, chemical, utility and mining industries while partnering with OSIsoft and Microsoft’s Partner Network.

The platform and the solution is a good fit for those industries, as those fields tend to rely on proprietary automation and equipment platforms that need optimization. Oil and gas, specifically, moved their strategy from offshore to their current installed base to find profitability and most producers are understanding the need for infrastructure improvement. From the press release, the Element Platform works with OSIsoft’s technology in moving unstructured, operational sensor data from “silos” to a cloud-based analytics platform, where asset models help predict downtime for physical equipment.

Related Content | How to Start a Predictive Maintenance Program

“Industrial operators face no shortage of data, says David Mount, Kleiner Perkins’ Green Growth Fund partner and co-founder of Element Analytics. Mounds of data exist, but getting the data to a ready state is core to making it analyzable, predictive and actionable.”

Predictive maintenance technology has been slow to be adopted due to operational and production conflicts, but recent IIoT solutions live on separate platforms. This allows for control platfom updates, like security patches to occur, while not interrupting asset management programs.

The Element platform also uses Microsoft Azure and Cortana Intelligence for the cloud-based analytics.

For more information, visit www.elementanalytics.com

1601Iot_logoFor more IIoT coverage in maintenance and operations, click here! 

289

6:58 pm
February 10, 2017
Print Friendly

Obsolete Inventory? Deal with It.

randmObsolete. Everyone who has ever purchased a computer knows what that means. It describes your computer within a month or so of your purchase.

When the discussion turns to a plant’s MRO inventory, Roger Corley of Life Cycle Engineering (LCE.com) says it’s an entirely different type of conversation. That’s because some items are never used, yet continue to collect dust and take up valuable storeroom real estate. He has some tips for dealing with this obsolescence, starting with how to identify it.

Identifying obsolete MRO inventory, in Corley’s opinion, is the easy part, especially if a good set of parameters has been established. Most large storerooms, he says, apply these factors:

• items with movement (receipts or issues) in 3+years

• items that aren’t identified as critical spares

• items that aren’t on an active asset’s BOM (optional).

Up-front planning can ease your site’s identification and disposal of obsolete MRO items.

Up-front planning can ease your site’s identification and disposal of obsolete MRO items.

With these parameters in place, most inventory systems can quickly generate a list of obsolete items—something that should be done annually to make it easier to manage the following years’ lists.

According to Corley, the more difficult (politically charged) challenge associated with obsolete MRO items is their disposal. That’s why storeroom managers must be involved in a site’s budget-preparation process. For one thing, there will need to be a line item in the budget for disposal of inventory. In addition, since writing off unused inventory can be damaging to a company’s bottom line, it’s crucial to prepare (and obtain approval) for doing so ahead of time.

Another issue involves disposing of what personnel believe “belongs” to them. As Corley put it, “I’ve seen maintenance supervisors and managers dig in their heels when a storeroom manager begins removing what they think of as ‘their’ MRO items.” His advice to storeroom managers is to take great care to ensure important items that might have been left off the list of critical spares aren’t eliminated from inventory. Some front-end work on the part of storeroom managers can smooth the process. Such work includes:

• investigating the history of the proposed item considered for disposal

• grouping items into specific operating areas on site and scheduling meetings to review (tip: buy lunch to get participation)

• allowing area managers to present a case for inclusion of a critical spare and being prepared to offer solutions such as vendor-stored inventory.

Once a list is developed and agreement among stakeholders reached, the obsolete items must be removed from inventory and disposed of. Corley notes that this phase will be less painful in plants that have investment-recovery departments. Smaller operations will sometimes list the obsolete inventory on bidding sites or, in the case of metals, recover money by scrapping items.

“Either way,” he cautioned, “sites shouldn’t expect to get anywhere near what the initial investment was when the items were purchased. In the case of scrap, they’ll recover pennies on the dollar. As for companies with multiple plants, it’s important for sites to check with other locations regarding possible use of obsolete items before disposing of them.”

To Corley’s way of thinking, dealing with obsolete MRO inventory, including identifying and disposing of it, needn’t be viewed as a daunting task. “That is,” he said, “if the process is managed properly and homework is done before the items are removed.”  MT

—Jane Alexander, Managing Editor

Roger Corley is a Materials Management subject-matter expert with Life Cycle Engineering, Charleston, SC, and a certified facilitator for Maintenance Planning and Scheduling with the Life Cycle Institute. For more information, email rcorley@LCE.com and/or visit LCE.com.

Navigation