Archive | Lean Manufacturing

142

1:18 pm
August 14, 2017
Print Friendly

Reliable Security Depends on Reliable Operations

Y-12 is the only site in the Nuclear Security Enterprise that can produce lithium materials. Replacement of the lithium operations is anticipated in the mid- to late-2020s.

Y-12 is the only site in the Nuclear Security Enterprise that can produce lithium materials. Replacement of the lithium operations is anticipated in the mid- to late-2020s.

A focus on PM optimization, culture change, sustainable processes, and employee empowerment drives reliability efforts at the Y-12 National Security Complex mini city.

By Michelle Segrest, Contributing Editor

Spanning 2.5 miles between its east and west boundaries, the 74-yr.-old Y-12 National Security Complex is a “mini city” inside the city of Oak Ridge, TN. Within its secure borders, are 379 buildings of manufacturing, production, laboratory, support, and research and development areas managed by Consolidated Nuclear Security LLC (CNS) under contract for the National Nuclear Security Administration (NNSA).

Y-12 also includes its own armed security force, fire department, steam plant, medical facility, cafeteria, and electrical-distribution center, all of which accommodate the nearly 8,000 people who work within the “city” borders each day.

Led by director of enterprise reliability and maintainability Joe Boudreaux, a 45-member reliability team is responsible for the proactive maintenance strategies of the buildings on the 811-acre campus. Deep into the second of a five-year reliability-improvement program, the team has built a firm foundation and is now strategically navigating its road map with the ultimate destination of establishing a sustainable, proactive maintenance program.

“Within the building site there are mini-plants within the city,” reliability and maintainability manager Paul Durko explained. “And within each of those mini-plants, certain processes, systems, and cultures that exist. Our goal is to secure a sustainable system of processes that work across the board, promoting an increase in overall reliability for this aging site. But it also has to be a system that will translate to a new facility—a $6.5-billion Uranium Processing Facility (UPF) that will be built and in operation by 2025.”

The Y-12 site houses many facility types, including some areas with gloveboxes.

The Y-12 site houses many facility types, including some areas with gloveboxes.

Y-12 history

Since 1943, Y-12 has played a key role in strengthening the United States’ national security and reducing the global threat from weapons of mass destruction.

The Y-12 National Security Complex is one of eight sites in NNSA’s Nuclear Security Enterprise (NSE). Y-12’s unique emphasis is in the processing and storage of uranium and the development of technologies that are associated with those activities. CNS also manages the 18,000-acre Pantex plant in Amarillo, TX, which is the primary U.S. nuclear weapons assembly, dismantlement, and maintenance facility. A majority of the weapons-related operations at Pantex are conducted on 2,000 acres of the site.

Constructed as part of the World War II Manhattan Project, Y-12 provided the enriched uranium for Little Boy, the atomic bomb dropped on Hiroshima, Japan to help the U.S. and its allies end a war that had taken 63 million lives worldwide. Afterward, Y-12 provided lithium-separation functions and key components for thermonuclear weapons. Y-12’s expertise in machining, handling, and protecting radiological materials has made the Oak Ridge site central to the nation’s nuclear security.

Y-12 has developed state-of-the-art capabilities in three core areas: nuclear technology and materials, security and consequence management, and manufacturing and technical services. Y-12 lends its specialized expertise to other federal agencies, such as the U.S. Departments of Defense and Homeland Security, state governments, and private-sector companies.

Projects at Y-12 include providing protective equipment to soldiers in combat, training National Guard units for radiological emergencies, and creating machining platforms that improve production and efficiency.

More than 9,200 Tennessee citizens work at Y-12, including federal and contractor staff.

“Our primary responsibility is to make sure the nuclear weapon is reliable,” Boudreaux said. “We do all of the testing and checking to make sure that if there is ever a need to use a nuclear weapon, that that weapon will work. The whole goal of the plant is global threat reduction, and when you think about all of the components that go into that, there are a lot of different things that have to be done here. So it’s not just a single process.”

In the early days, as it is today, maintaining building and process support systems was just as important as the process itself. In this photo, two men work on converter motors in Beta 3 while two others observe.

In the early days, as it is today, maintaining building and process support systems was just as important as the process itself. In this photo, two men work on converter motors in Beta 3 while two others observe.

Pursuing world-class reliability

With a commitment to reliability and with corporate support, Y-12 commissioned the Univ. of Tennessee’s Reliability and Maintainability Center (UTRMC) to perform benchmark assessments. The next step was building pillars for the foundation of an overall reliability program. This included plans for an improved culture, PM optimization, training and education, full utilization of technology and software, increased ratio of proactive to reactive maintenance, continuous-improvement plans, scheduling improvements, and employee retention.

The UTRMC provided a subject-matter-expert (SME) analysis of the current state of the Integrated Work Control (IWC) and Maintenance Execution processes. The evaluation consisted of site visits and evaluations of the essential elements including:

• synchronization of production, engineering, and maintenance reliability improvement efforts
• targeted opportunities for improvement
• plant employee training opportunities
• methodology for transitioning plant personnel from tactical (reactive) maintenance
• methodologies to a strategic posture
• development of a reliability-based plant culture.

We talk a lot about the ratios between how many corrective maintenance jobs to do and how many things we do that are proactive,” Boudreaux said. “When you look at Y-12, you can’t just look at that globally. You have to look at the individual component. If you would take a step back, we are a very reactive maintenance organization. So what we have done over the past few years is try to turn that from a very reactive program into a proactive program. A lot of things we are seeing are all these unplanned failures. And honestly, maintenance has become very, very good at firefighting. But it is very, very expensive to do that.”

The pursuit for world-class reliability has been a slow but fruitful process. 

“The way that our program was set up, we feel like we have turned the big battleship,” Boudreaux said. “It’s a big ship and requires a slow move to get it to turn that corner.  One way to be more cost effective is to decrease the amount of corrective work that we do. How do we do that? We reinvest in the plant. We get new equipment, and we maintain it the way we are supposed to, but we also look at the equipment that we have and ask what we can do to increase the reliability of those assets. We know that doing preventive maintenance is safer, but we can also save costs this way.”

One huge early success has been optimization of the PM program.

“We have increased the interaction of our crafts with the development of our packages,” Boudreaux explained. “By going through our PM Optimization (PMO) process, we now have more thorough documentation and better estimates of the time and resources required for each PM. We can now identify the costs and the benefits.”

A worker wearing protective gear walks down a hallway in Building 9212. The building’s aging infrastructure and equipment make obtaining replacement parts for electrical, ventilation, fire-protection, and other systems a challenge.

A worker wearing protective gear walks down a hallway in Building 9212. The building’s aging infrastructure and equipment make obtaining replacement parts for electrical, ventilation, fire-protection, and other systems a challenge.

The next step is communication. “It hasn’t been a difficult sale because very few people would drive a car for two years and never change the oil,” Boudreaux explained. “A robust PM program just makes good sense.  And we now have documentation that clearly lays out the tenants of reliability. We now have a road map that explains what we have done and what we should be doing over the next few years. Part of the plan is to ensure this plan is communicated to everyone in the plant.”

Communication helps to provide influence within the organization.

“Paul’s [Durko] responsibility is to influence the maintenance craft, for example,” Boudreaux said. “He works with the maintenance manager and his maintenance-execution team. He is arranging for additional training to help improve skills and capacity. With great communication and influence, we can produce a better-quality product for our customer. The road map shows how everything fits together for the future.”

One of Y-12’s core missions—maintaining the safety, security, and effectiveness of the U.S. nuclear weapons stockpile—translates into the overall reliability mission.

“If you want to think of similarities, you can look at the production goals for our different systems,” Durko said. “We must break down the different processes, look at the availability requirements for that equipment, and understand what we are doing to ensure the equipment can meet those production goals. What we did well for many years is that when it breaks, we are going to fix it. With an aging facility and with this aging work force, the challenge now becomes how to do it cheaper. How are we effectively managing our assets? What appropriate programs do we have in place to ensure that that equipment will operate when it is supposed to operate? This is how we integrate the idea of reliability across the site.”

With a distinct plan and road map to get there, all the pieces begin to come together.

We understand that each milestone is just a piece and not overall reliability,” Durko said. “We now consider all of the tools in our tool belt—RCM analysis, PdM technologies, SAP integration, procedural requirements, etc. Bringing all the tools together to make the systems cost effective and also ensure the safety of our people and equipment are the ultimate ingredients that will get us to overall reliability.”

Operations at Y-12 are varied and complex, presenting a wide range of maintenance challenges.

Operations at Y-12 are varied and complex, presenting a wide range of maintenance challenges.

Proactive maintenance

The focus in the first year was building a robust proactive maintenance program, Durko said. “Our past strategies and mission focus have caused us to become superb at finding ways to keep our failing systems running. We have begun shifting our mindset.”

The Y-12 site averages 2,750 completed maintenance orders each month, with an average of 99% utility availability, and has set a goal of 40% reduction in planning time.

“We are now averaging 64% reduction in planning time,” Durko said. “We are also proud that we recently reached 50,000 safe work hours with the PMO program. A bonus result is a 20% reduction in execution time. That is easy to sell to customers. Any time you say optimization, you automatically think of cutbacks and loss of jobs.” He added that because the plant had been in a reactive mode, they have been able to talk about the amount of reactive versus proactive work and actually improve the PM program.

The proactive maintenance strategy includes condition-based maintenance using ultrasound and vibration analysis tools, Durko said. “Also, document control is a key tool. We are dependent on what all that data is telling us to be able to make our decisions.”

With the proactive strategy taking shape, the next step is standardization, Durko said. “Having a repeatable process is key. We have standardized the format in a way that the crafts can better use—they actually helped us develop the format, so now it’s about execution. Next, we want to find a way to better rely on our predictive methodologies and leverage our technology. Hopefully, the data will tell us what is the next step. Meanwhile, we are refining our lubrication program with ultrasound and honing our precision-maintenance skills.”  None of the improvements made thus far would be possible without the interface and support of the technician work force.

When Y-12 researchers aren’t analyzing uranium, they are finding new ways to detect it. This photo is from a project designed to grow lithium semiconductor crystals suitable for radiation detection, which is the first step in solving a global shortage of Helium-3, the most common element used in current detectors.

When Y-12 researchers aren’t analyzing uranium, they are finding new ways to detect it. This photo is from a project designed to grow lithium semiconductor crystals suitable for radiation detection, which is the first step in solving a global shortage of Helium-3, the most common element used in current detectors.

What’s next?

The next goal is to increase condition-based maintenance work by 15% in the next fiscal year. 

“I don’t think our road ever ends,” Boudreaux said. “You can always find a way to be even more reliable. But if we have that foundation, and we build off of that, then every time we bring something in, we can evaluate it against what we are trying to achieve with the program and see whether or not it has value. Having a firm foundation allows us to do that. The exciting part is to have some programs in place and begin to see the data that tell us it’s working.” MT

Y-12 by the numbers

Y-12 today:

• 811 acres, including 150 that are high security
• 7.3 million sq. ft. of laboratory, machining, dismantlement, research and development, and office areas
• 343 buildings, 13 mission-critical facilities
• 48% of all Y-12 facilities are more than 60 years old
~9,300 personnel at Y-12
~4,700 CNS employees; remainder are subcontractor and federal employees
Deferred maintenance of $354 million
• Contracts with more than 770 small businesses, totaling $177 million in FY 2016.

Y-12 site includes:

• 550,000-sq.-ft. on-site leased facilities (Jack Case and New Hope Centers)
• 24 mi. of paved roads
• 10 mi. of overhead steam lines
• 3 mi. of natural-gas-distribution lines
• 55 mi. of aerial electrical-distribution lines
• 10 mi. of underground electrical-distribution lines
• 19 mi. of main water piping
• 50 mi. of storm drain lines
• 15 cooling towers.

Michelle Segrest is president of Navigate Content Inc., and has been a professional journalist for 28 years. She specializes in creating content for the industrial processing industries. If your facility has an interesting maintenance and/or reliability story to tell, contact her at michelle@navigatecontent.com.

26

7:38 pm
August 10, 2017
Print Friendly

Can You Be Lean Without Reliability?

klausblache

By Dr. Klaus M. Blache, Univ. of Tennessee Reliability & Maintainability Center

The goal of most facilities is to increase production and reduce costs. Implementing a Lean process enables an ongoing focus on continuous improvement by constantly reducing waste from, among other things, overproduction, material movement, excess inventory, and rework. In short, it’s a systematic method for removing non value-added practices.

My Lean implementation experiences involve more than 30 elements, including 5S, mistake proofing, TPM (Total Productive Maintenance), just-in-time (JIT), and kaizen. When I roll out a reliability and maintainability (R&M) process, it’s done with 14 elements, including work management, equipment and process design, TPM, standardized processes, and root-cause analysis (RCA).

The most successful Lean and reliability processes start with organizational culture (first improving employee engagement, developing a culture of discipline, and forming an operations and maintenance partnership). Lean and reliability reduce defects. Lean builds quality in station and reliability reduces designed-in R&M issues as organizations move from reactive to more-proactive maintenance. Lean uses a kanban (pull-system) to build product on-demand, and reliability promotes condition-based maintenance to respond to demand, i.e., measured target values.

Many additional things need to happen to make Lean and reliability successful, but they should all be driven by small-team continuous-improvement efforts. Lean and reliability basically share a number of similar core processes. A few key ones include:

• focus on the operator/autonomous maintenance
• 
standardized work/processes
• 
waste reduction
• 
continuous improvement
• 
data-based decision-making.

In actuality, reliability shares and improves many of the elements needed for Lean.

In actuality, reliability shares and improves many of the elements needed for Lean.

Reliability also supports Lean through lifecycle asset management that increases Overall Equipment Effectiveness (OEE) and reduces cost. After all, unstable machine conditions make a pull-system difficult or impossible.

The toughest part of implementing Lean and reliability is culture-related, i.e., when transfer to daily practice needs to occur. Implementation might work for a short time, but can it sustain? Unstable (low-reliability) processes can’t be sustained. Kaizen is much easier and positive when sites have a history of team problem solving.

My research has shown that top-quartile companies in reliability, i.e., lowest reactive maintenance:

• were 27% better in OSHA Recordable Incident Rates than the average of the remaining facilities.

• averaged 7% higher OEE than Middle (2nd and 3rd quartile) performers and 11% higher OEE than those in the bottom quartile.

• averaged nine suggestions per employee versus one for the lower 75% of companies.

• were 28% better in maintenance cost (expressed as a percentage of sales) than the middle 50% and 69% better than the bottom quartile.

A study of more than 400 facilities showed that more than 70% of Lean implementations failed, i.e., attained less than half of the expected business results. Reasons for these failures often involve not being culturally ready, lack of workforce discipline in standardized work, and employees not engaged in continuous-improvement efforts.

My facility assessments indicate a high correlation between improved organizational culture and increased plant reliability-process maturity. While it’s critical to have the right processes in place, improving culture helps operations quickly achieve top-quartile performance.

Reliability shares and improves many of the elements needed for Lean. It can also provide detailed technical direction on process variability and capability. Using Weibull analysis, you can better plan for maintenance and calculate such things as how much variability is acceptable and if the operation is running at the highest possible throughput.

To answer the question in the title, the foundational elements of Lean and reliability are so intertwined that you can’t accomplish Lean without reliable people, processes, and production machinery and equipment. MT

Based in Knoxville, Klaus M. Blache is director of the Reliability & Maintainability Center at the Univ. of Tennessee, and a research professor in the College of Engineering. Contact him at kblache@utk.edu.

85

7:13 pm
August 10, 2017
Print Friendly

Study Helps You Evaluate Your Industry 4.0 Future

parrmugAlmost any conversation you have these days involving manufacturing technology will either begin or end with discussion about Industry 4.0 (Manufacturing 4.0, Internet of Things, Industrial Internet of Things, cloud computing, smart factories). In my analysis, so much of the talk is just talk. People realize that they need to embrace Industry 4.0, in many cases, because others say so, and in some cases because they know that it is the future of manufacturing, that the future is here, and that many are already getting left behind.

The questions on my mind are where companies may be on the continuum that moves them to full implementation of Industry 4.0 technology and what factors must be addressed? I recently received answers in the form of a white paper summarizing research that Frost & Sullivan’s Digital Industrial Group (frost.com) conducted in collaboration with NTT Data Services, Plano, TX.

The publication, “Manufacturing 4.0: A Playbook for Navigating the Journey to IT Modernization & Transformation,” outlines six critical issues in today’s manufacturing ecosystems that must be addressed if an enterprise is going to embrace and benefit from Industry 4.0. (The white paper refers to it as Manufacturing 4.0. It would really help if everyone would just settle on one name.) Of those six issues, the research data from four of them paint a rather strong picture about the current status of Industry 4.0 in manufacturing.

New research from Frost & Sullivan and NTT Data Services reveals just where manufacturing enterprises are on the path to full Industry 4.0 implementation.

New research from Frost & Sullivan and NTT Data Services reveals just where manufacturing enterprises are on the path to full Industry 4.0 implementation.

The Factories of the Future issue looks at end-to-end digitalization of manufacturing processes, i.e., IP-enabled factories. The research question was “How extensively has your company IP-enabled and networked its plant-floor equipment today and what do you expect the extent will be in five years’ time? Responses were not a surprise: 32% answered “Partially” for today and 46% said they are just getting started. Only 9% answered “Extensively” for today. The five-years-from-now answer was a mixed bag: 34% answered “Partially” and 55% answered “Extensively.”

The issue of Transformative Technologies asks for the most important business factor driving a company’s move toward Manufacturing 4.0. The leading factor, by a wide margin, was Operational Efficiency at 32%. The next closest factor, at only 17%, was “Increased competition due to globalization,” followed by “Customer expectations” at 16%.

The Next-Generation Manufacturing Leadership issue is also revealing. The question: What do you think are the three most significant challenges to implementing Manufacturing 4.0 in your company? “Understanding the benefits/challenges” led the way at 37%, followed by “Corporate culture” at 29% and “Lack of buy-in from the C-suite” at 26%. Tied at 25% were “Finding skilled people,” “Change management,” “Developing a Manufacturing 4.0 strategy,” and “Identifying opportunities and ROI.”

That Next-Generation Manufacturing Leadership issue tells me what I’ve suspected: Most people are at the beginner end of the spectrum and need substantial education and help. But there’s also a question of how convinced enterprises are that Industry 4.0 really is the future. In the Changing Workforce Dynamics issue, 42% say that Manufacturing 4.0 is “A game changer, truly a new era.” But 50% feel that it’s “Significant, but not transformative.”

I’ve only hit the highlights of this research report. No matter where you are on the path to full Industry 4.0 implementation, this study is compelling. Download it here. MT

gparr@maintenancetechnology.com

129

7:28 pm
July 12, 2017
Print Friendly

Uptime: Curiosity — It’s Fundamental To Reliability Improvement

bobmugnewBy Bob Williamson, Contributing Editor

Have you ever wondered why something is the way it is? Why is the sky blue? Why does it rain so much (or not enough)? Why don’t “they” understand maintenance?

Consider small children asking “why” again and again and again (often to the dismay of weary parents or caregivers). Those little ones are simply being curious, and for good reason. Curiosity is how humans learn—including in our work lives.

cur-i-os-it-y:
A strong desire to know or learn something.

Think about your plant: Is curiosity thriving there, or is it being stifled?

Frequently, we see what occurred and, sometimes, how it occurred. But how often do our second natures kick in and compel us to explore why something occurred (the cause)? Unfortunately, the real “why” may not be observable—it could be hidden. Consequently, it’s not uncommon for individual and/or implied organizational responses to run along the lines of “it always does that” or “I don’t really know.” Being able to answer “why” questions depends on the curiosity of personnel. I am convinced that being curious is the fundamental ingredient in reliability improvement.

In today’s workplaces, though, curiosity alone isn’t enough. It takes motivation to be curious (motivation to dig deeper into issues). All too often, the motivation (or available time) to ask “why” is insufficient for getting to the root cause of a problem, which, accordingly, is the first step in problem elimination.

mo-ti-va-tion:
Internal and external factors that stimulate desire and energy in people to be continually interested and committed to a job, role, or subject, or to make an effort to attain a goal.

Let’s explore these elements of a reliability-improvement work culture.

Reliability and curiosity

Usually, the first response in a plant when equipment breaks down is “fix it.” The typical first question is “What happened?” followed by “How do we fix it?” Only when we ask how and why equipment fails, do we actually begin solving the main problem.

(NOTE: It’s not unheard of for a “what” question to elicit this type of implausible response from personnel: “Nothing happened; the machine is running perfectly.” If true, that would basically reflect a state of reliability at its best, a highly unlikely situation. Be sure to ask why that machine is running perfectly.)

Although curiosity should be used to drive your reliability program, roadblocks are a fact of life. For example, how often do you hear these statements in your workplace:  “We don’t have time.” “It’s not my job to ask why.” “I’ve often wondered why, but every time I bring it up, there seem to be bigger issues.” They’re indicative of low levels of desire to know or learn more about an issue.

why question in wood type

Motivation to be curious

Organizational curiosity is a requirement for improving and sustaining reliability. The question is, how do we motivate individuals, and the organizations they comprise, to be curious?

Benefiting from curiosity in a workplace depends on the work culture that top leaders create. The motivation to be curious on the job is more than an individual factor. While an individual may be internally motivated to be very curious on the job, the organizational (external) motivation to be curious may not be there. Individual curiosity may be stifled, not recognized, and/or not appreciated.

Business author Harvey Mackay described the potential of individual curiosity this way: “Pay attention to those employees who respectfully ask why. They are demonstrating an interest in their jobs and exhibiting a curiosity that could eventually translate into leadership ability.” In other words, curiosity is also fundamental to effective leadership.

High-performing organizations have a passion for eliminating problems, improving performance, and engaging everybody in the process. A compelling business case, in turn, can be a real motivating factor for improving organizational performance and reliability, as well as improving equipment performance and reliability.

Inspiring and enabling curiosity

Leadership is the heavy-lifting component in motivating curiosity. Whether it’s top management or group leaders, plant leadership must be inspirational in the quest for organizational and individual curiosity. Consider the following real-world example.

Serving as a long-term consultant to an established manufacturing operation, I noticed what appeared to be excessive amounts of finished product being discarded as scrap. To be sure, legitimate defects, some big, but mostly small, were leading to the situation. Still, I felt it reflected a waste of good money—in terms of material, labor, and overhead—and a huge loss of equipment effectiveness and sales revenue.

When I asked why those mountains of scrap were being produced and thrown away, the response was typically, “That’s the way it is here.” While the organization, as a whole and individuals in it, clearly understood the scrap as waste, they considered it acceptable, i.e., already built into their costing and production-planning standards. Despite the collection of waste data in production-report databases, no waste metrics were being trended.

At some point, after extensive work with this operation to improve equipment performance, I found a relatively easy way to put a dollars-and-cents value to the waste. It came from asking “why” and exploring the production database for answers. My calculation of the actual seven-figure cost to produce scrap at the plant evidently resonated more with management than the previous reports of waste amounts and percentages. As a result, the site’s C-level leaders launched a waste metric and engaged work groups at the machines and in the manufacturing process to regularly ask “why.” Scrap products are now counted and monetized, something that’s reportedly setting the stage for cost savings.

What about your operations? How can you motivate organizational curiosity and inspire individuals to ask “why.” Consider these tactics:

• To paraphrase W. Edwards Deming, maintain a “constancy of purpose for the improvement of product and service.”

• Become obsessed with the elements of the organization’s competitive advantage.

• Model the way: Walk the talk, ask “why,” and invite others to pitch in.

• Disrupt the status quo as it interferes with performance improvement.

• Celebrate improvement efforts and wins.

In the meantime, never forget that answers to “why” questions are the first steps toward reliability improvements in your plant. MT

Bob Williamson, CMRP, CPMM, and member of the Institute of Asset Management, is in his fourth decade of focusing on the “people side” of world-class maintenance and reliability in plants and facilities across North America. Contact him at RobertMW2@cs.com.

19

5:24 pm
June 16, 2017
Print Friendly

Asset Management ‘Leaders’ and ‘Leadership’

Screen Shot 2017-06-16 at 12.22.22 PMBy Bob Williamson, Contributing Editor

In previous installments of this column, I’ve written that leadership and culture are determinants of an asset-management system. That comes right out of ISO 55000 documents. This Standard also states, “Leadership and commitment from all managerial levels is essential for successfully establishing, operating, and improving asset management within the organization” (ISO 55000, 2.4.2). A note of caution: Don’t confuse asset-management “leadership” with asset-management “leaders” or “managers.” Let me explain.

A leader (or manager) is someone with the responsibility to take action. Leadership, on the other hand, refers to a behavior, one that inspires and motivates. A designated leader (or manager), though, doesn’t always exhibit leadership behaviors.

Leaders (or managers) involved in the highest levels of decision-making in a business can require and resource an organization’s conformance, compliance, or certification to the ISO 55000: 2014 Asset Management Standard. These people are referred to as “top management” (as defined in the Standard). But asset-management leadership doesn’t have to mean a designated person in the executive suite.

Leadership behaviors can be exhibited anywhere in an organization, from top management to people at all levels of an organization, i.e., a leadership team. That’s what we want and need for establishment of fully functional asset-management systems.

The ISO 55000:2014 Asset Management Standard could play a major role in industry in the coming years. Keep up to date with our ongoing coverage of this Standard at maintenancetechnology.com/iso55k.

The ISO 55000:2014 Asset Management Standard could play a major role in industry in the coming years. Keep up to date with our ongoing coverage of this Standard.

Asset-management structures

When we envision an leader as “someone” who is responsible for establishing an organization’s asset-management system, we’re probably asking way too much of a single person. An asset-management leader should be a person who is actively involved in setting expectations, providing resources, holding people and teams accountable, and generally setting the direction and maintaining progress toward a goal. Organizations should have many asset-management leaders.

To clarify: Each phase of the asset-management life cycle is likely embodied in different sub-divisions of the greater organization, each with their own hierarchy or management structures. There should be an asset-management leader—one who is responsible for providing leadership—within each of these organizational sub-divisions. This divisional leader is also part of the bigger, overall asset-management leadership team governed by top-level management.

Asset-management culture

Top management, as discussed in the ISO 55000 documents, refers to the top-level business decision makers. In this role, it’s unlikely that these managers would be asset-management leaders. But they’re definitely in an asset-management leadership role through their responsibilities to stakeholders.

All too often, the terms “leader,” “leadership,” and “management” are used interchangeably. In the ISO 55000 area, there is a key difference. Those in top management define (by design or default) an organization’s asset-management culture. They set the overarching tone and tenor of the organization’s behaviors in the quest for establishing an asset management system (whether related to ISO 55000 or something else). They inspire and motivate (and/or require) an organization to take action through the hierarchy of asset-management leaders.

An asset-management culture depends on leaders and leadership at all levels and sub-divisions of an organization as they align for establishing a life-cycle asset-management system. I believe this is what is meant by “Leadership and commitment from all managerial levels is essential for successfully establishing, operating and improving asset management within the organization.” MT

Bob Williamson, CMRP, CPMM, and a member of the Institute of Asset Management, is in his fourth decade of focusing on the people-side of world-class maintenance and reliability in plants and facilities across North America. Contact him at RobertMW2@cs.com.

131

2:55 pm
April 18, 2017
Print Friendly

On The Floor: Management Rapport? Thumbs Up and Down

Mechanical and electrical plant roomsBy Jane Alexander, Managing Editor

For some reason, the following question about management rapport really kicked MT Reader Panelists into high gear this month. Lots of them (more than usual) wanted to express their opinions (some in far more detail than they typically provide). The result is that we can’t include all responses on these two pages. 

Q: What was the state of rapport between their sites’ plant-floor reliability and/or maintenance teams (or their clients’/customers’ teams) and upper management, and why?

Here are a few of the responses we received. As usual, they’ve been edited for clarity and brevity.

Industry Consultant, West…
Management rapport [with maintenance and reliability teams] is one of the main indicators I use when working at a new [client] site. If there’s tension between these departments, there will be communication breakdowns—virtually every time.  Performance will suffer greatly, and each group will blame the others.

In general, I find a good, strong, open, and honest working relationship in less than 30% of my clients’ operations.  If I can resolve issues between the groups, and improve relationships, the parts of the maintenance and reliability puzzle fall into place rather easily. In the age of e-mail, texting, and voicemail, however, it’s much easier for silos to exist and not handle issues face-to-face.  In my opinion, it seems to be getting easier to let site relationships erode rather than repair them.

Maintenance Technician, Discrete Mfg, North America…
Not the greatest here (always a struggle because upper management is constantly looking to cut corners). They call it risk management, yet when something goes wrong, they panic. Some of our older equipment has been paid for many times over. Now, though, we’re into a stage where it’s hard to get parts for this equipment. We [our team] really tries to stress the importance of preventive maintenance (PMs) and taking care of things, as in “if you take care of your stuff, your stuff will take care of you.” But it becomes frustrating when that idea seems to fall on deaf ears and they [management] seem to dodge another bullet. (This opinion is based on personal experience; I’ve been working in this plant for many years.)

Industry Supplier, Southeast…
With regard to my customers, management rapport, in most cases, is still not very good. I work with a lot of plants where plant-floor staff need help, but must get upper management to buy in. Most preventive-maintenance (PM) personnel don’t have the knowledge to make their case. When I’m able to meet with both sides at the table and pitch ROI (return on investment), it seems that they begin to understand each other better, i.e., that the ROI for Management is dollars and the ROI of PM teams is reduced failures and workload.

Reliability Specialist, Power Sector, Midwest…
Our team has an excellent rapport with all levels of the organization.  The secret to good rapport is to not only talk the talk, but to walk the talk. The site’s PdM/PM program mission is to use our knowledge and appropriate technologies on the facility’s assets to provide the operating group safe, efficient, and reliable equipment.  In the same manner, we are to use our knowledge and available technologies to safely and effectively reduce the facility’s operating and maintenance costs.

Industry Supplier, Midwest…
It’s ugly (management rapport, that is)! Many of my plant-floor customers have lost budgets and been reduced to performing reactive work, as opposed to proactive maintenance. They’re dealing with plants that are already in bad shape and disrepair, and answering to management that still wants to run full production. They have no inventories, no spares, and no orders for items with extremely long lead times. It’s not a pretty picture. One ray of hope [a slight improvement] is that site management is now being forced to go to corporate for monies and also discuss why equipment was allowed to go so long without repair. The overall situation, though, leads to pain and agony for those having to do work, that, if it had been done when needed, would have been a simple fix, not a catastrophic fix.  

Industry Consultant, North America…
There’s no guarantee that upper management has a solid understanding of reliability excellence. This is especially true if no executive-level stakeholder exists. Quite often, the focus from the top is solely on cost management (not on failure prevention or defect elimination.) In my experience as a consultant, a common complaint at the working level has focused on incoherent, ongoing initiatives that aren’t solidly linked to goals. This issue could be resolved if long-range plans were created based, say, on ranking of each initiative by priority and benefit and then stretching them out over a period of time. Leadership should encourage these types of plans for excellence, and involve plant personnel in their definition.

Maintenance Leader, Discrete Mfg, Midwest…
As noted in some of my past Reader Panel responses, maintenance used to be the redheaded stepchild at our facility. The problem started with the fact that plant managers and senior managers seemed to come and go [change] frequently. Because of this, “flavor of the month” programs were the norm. This changed with the arrival of an outside consulting firm. When upper management listened to suggestions and our plant-floor personnel saw that their ideas were listened to, maintenance took ownership. This made a big difference with proactive versus reactive work. We’re now getting our preventive maintenance work done as well. Things are looking good.

Reliability Engineering Leader, Process Mfg, South…
If I had been asked this question a couple of years ago, I would have characterized the relationship between management and plant-floor teams as indifferent. It wasn’t adversarial, but more a matter of management viewing maintenance as a necessary evil than a competitive advantage.  That has changed significantly. Last year, leadership announced PM Completion Rate (with a target of 95%) as one of the top metrics for the company. That was a real game changer. Suddenly, everybody was interested in preventive maintenance—it had become part of their personal-performance expectations. Respect for the importance of scheduled maintenance compliance made a dramatic shift, and we exceeded our PM-completion target.  This coming year, unscheduled asset downtime is being added to the top company metrics and will be reviewed on a monthly basis by executive management. This is a clear example of how leadership from the top can really drive change. 

Industry Consultant, International
In answer to your question, this situation [management rapport problems] is brought on by local company politics, lack of training, and basic mismanagement among, other things.

While I’ve worked with various clients, including some where severe adversarial relationships existed between Maintenance and Production/ Upper Management, by coaching ALL responsible parties that state of the art reliability and maintenance saves money, increases OEE (overall equipment effectiveness), improves uptime, and increases productivity, etc. I have convinced maintenance and top management that maintenance/reliability is a business partner NOT a “ we break it/you fix it” stepchild.

After training of top-level maintenance, production and sometimes even general management personnel by professionals in reliability and maintenance management, common goals are identified and cooperation is much improved. Accountants watch the bottom line weighing these additional consultant/training costs against expense reductions and production improvements. Results are that teamwork builds and floor-operations to staff-level relationships smooth out.

“Equipment Ownership,” in selected cases, brings hourly production and maintenance crafts together and reinforces the hourly–personnel through management relationship. Although this has, at times raised, the eyebrows of union officers, they usually go along when the benefits to all are obvious.

Yes, I have seen too many operations where maintenance and production departments, which usually have the ear of top management, DO NOT have a smooth relationship. However, with the proper training and education of all concerned, this can usually be much improve to the economic and management benefit of all.

Plant Engineer, Institutional Facilities, Midwest
With regard to management rapport, for several months, maintenance (trades) forepersons at our institution have had to attend not only new-construction meetings, but even small-project meetings. The idea is that we (Maintenance) can add our concerns before, during, and after projects are completed. The problem with all this is how much time it takes. With so many projects and associated meetings [at our site] and the number of normal maintenance-type meetings we have, we almost always have at least one supervisor sitting in meetings 30 to 40 hours per week. Work for anybody attending these meetings gets pushed back and can delay repairs. It also creates more work for the people not attending.

Another problem we have is that only the person attending the meeting knows what was discussed and/or is coming up. Consequently, that individual has knowledge that other supervisors don’t. The system would work a lot better if one person could attend all the meetings and email a recap of each event so every supervisor would know where each project stands and what’s coming up, whether in his or her area/zone or not.

While most meetings cover such a wide variety of subjects that only 10% to 20% of their agendas can be devoted to individual trades, attendees must listen to everything. It would be better, if you were going to have a one-hour meeting, to break it down into four parts, i.e., plumbing, electrical, mechanical, architectural/structural. This way, a supervisor could attend only the part of the meeting during which his or her area was discussed, not the entire meeting, and, if email recaps were sent out, could still keep up with everything that transpires.

Engineer, Industry Supplier, Southeast
Management’s responsibilities are meeting production deadlines and goals while keeping operating costs to a minimum. The relationship between management and maintenance depends on how management views their maintenance program. Some management personnel look at maintenance as a cost center while others recognize it as a cost savings mechanism or in best case, the profit center. Understanding that maintenance is a part of the cost of the product being created softens the financial burden but also gives management a better perspective regarding the value their maintenance teams bring to the table.

Ours is an equipment-service operation that’s deeply involved in working with our customers to improve their PdM programs. As such we continue to invest a great deal of time educating upper management regarding the benefits of early detection of issues that will lead to premature failures as well as on-going inefficiencies. The more informed management becomes about heading off potential problems, and the tools and preventive measures available, the more they become involved with their maintenance teams. Informed managers will interact with their teams quicker and to a greater extent. Sometimes comparing the benefits of outsourcing major PdM activities is more appealing and acceptable to management personnel as it leaves their operators and technicians time to complete their daily routine assignments.

Maintenance personnel generally understand the need for planned routine maintenance. Their relationship with upper management is greatly improved when their leaders are also informed. Education is the key to improving the relationship between upper management and their maintenance teams as well as a way of improving efficiency and operational success of the facility. MT

Tip of the Month

“Add RED and GREEN colors to the face of standard pressure gauges. This allows anyone who looks at or takes readings on a single gauge (or dozens) to tell right away if a pressure is too low or too high. I’ve worked on equipment and in test labs where this little addition could have saved a lot of time and money, and helped any operator.”

Tipster: Plant Engineer, Institutional Facilities, Midwest (an MT Reader Panelist)

What about you?
Tips and tricks that you use in your work could be value-added news to other reliability and maintenance pros. Let us help you share them. Email your favorites to MTTipster@maintenancetechnology.com. Who knows? You might see your submission(s) highlighted in this space at some point. (Anyone can play. You don’t need to be an
MT Reader Panelist.)

306

8:19 pm
April 13, 2017
Print Friendly

Uptime: Aligning ‘Our’ Goals With Business Goals

bobmugnewBy Bob Williamson, Contributing Editor

Cut expenses. Boost performance. Those are among the goals of many businesses. Frequently, though—too frequently, in fact—maintenance managers find themselves between a rock and a hard place: improving maintenance while reducing costs.

By its very nature, the maintenance function is a business expense. As an extreme, we could eliminate the entire maintenance budget as a cost-cutting measure. Having done that, the business would suffer under significantly more expensive run-to-failure equipment-management practices, leading to increased costs of repair and lost revenues from unpredictable/unplanned equipment and facilities downtime.

Maintenance can be defined as “actions for sustaining a desired level of equipment performance.” From a maintenance professional’s perspective, the big picture is more about sustaining desired levels of business performance.

Let’s be clear, we could be discussing the maintenance department as we explore the principles of aligning maintenance with business goals. But, when reviewing the scope of maintenance work, we must think and look well beyond the maintenance department and consider the maintenance function, regardless of the organization(s) performing the work. This is a crucial distinction when it comes to the alignment of goals.

Typically, the maintenance department is perceived as the party that’s responsible for the health and well being of equipment and facilities. Yet, many (if not most) of the causes of unhealthy and poorly performing equipment and facilities go well beyond the scope of the maintenance department. As a result, maintenance basically gets to address the symptoms, not the true causes, of problems.

Efficiency vs. effectiveness

The noted business-management consultant, author, and educator Peter Drucker defined efficiency and effectiveness this way:

• Efficiency: Doing things right—able to accomplish something with the least waste of time and effort. (Focuses on process).

• Effectiveness: Doing the right things—producing the intended or expected result. (Focuses on results, outcomes, throughput).

Just because maintenance is performed efficiently does not necessarily mean that it is effective.

NASCAR race-team pit crews offer an excellent example. An efficient pit stop can be performed in record time. The pit crew’s work processes are highly efficient. But, if they always change four tires while only two tires are showing signs of performance-handling wear, pit stops are ineffective.

In the business context of auto racing and pit stops, it’s not the responsibility of the pit crew (let’s call it the “maintenance crew”) to determine how many tires to change. The crew chief (let’s call him or her the “maintenance manager”) reviews previous tire-performance data, compared with vehicle handling, as reported by the driver, and determines the tire-changing tasks to be completed during each pit stop.

After all, the goal of a race is not only flawless work execution (efficiency) by the pit crew, but also performance of pit stops in a manner that ensures the business goal of winning the race is a top priority (effectiveness).

All too often, we focus primarily on measuring and improving maintenance efficiency, including, among other things, preventive-maintenance (PM)-schedule compliance, mean time to repair, actual hours/planned hours, planning variance, and preventive/predictive-maintenance (PM/PdM) yield. While activities (or actions) associated with these measurements and improvements lead to excellent maintenance practices, they must be balanced with maintenance effectiveness.

Aligning maintenance functions with business goals assures maintenance effectiveness. Maintenance actions then contribute to the goals of the business.

This business line of sight reflects alignments from the upper-most purposes of an enterprise, down to plant-floor work execution.

This business line of sight reflects alignments from the upper-most purposes of an enterprise, down to plant-floor work execution.

Line of sight

I’ve discussed asset-management standards and the importance of aligning an organization’s work processes with their goals in numerous Maintenance Technology columns over the years. Both the PAS-55:2008 Asset Management Specification and ISO55000: 2014 Asset Management Standard refer to the importance of aligning asset-management practices to the goals of the business. PAS-55 referred to this alignment as a “line of sight” designed to assure the effectiveness of such practices.

Let’s use the chart on p. 6 to drill down through a typical line of sight, from the upper-most purposes of an enterprise, all the way to work execution on the plant floor. Since business terminology varies widely, here are my clarifications and some examples for this diagram:

• Business Opportunity (our market/customers/requirements)

• Shareholder/Owner Expectations (return on the investment)

• Organization’s Mission-Vision (who we are and where we want to be)

• Strategic Themes, Policy Statements (guiding principles)

• Strategic Business Plan (what and why)

• Business Goals (what we want to accomplish)

• Key Performance Indicators (measuring what is critical: financial, customer, process, people, and/or regulatory)

• Objectives/Strategic Initiatives (what and how)

• Organizational Structures (our divisions/cost centers/departments/shifts/crews)

• Job Roles & Responsibilities, Job Requirements (who, what, where, when)

• Work Processes, Methods, Procedures, Systems (how work should/shall be performed)

• Work Execution (performance management—how well).

Top-down/bottom-up

There are two ways to approach line-of-sight alignment. Most organizations view it from a top-down perspective to define their respective business models and what they should measure to determine whether they’re on a successful path. Their KPIs (key performance indicators) often provide necessary measures of success.

From a bottom-up perspective, we see Work Execution reflecting the fundamental actions required to meet the Business Goals as measured by the KPIs. The two paths (top-down and bottom-up) meet in the middle—aligned toward the same KPIs.

Connecting and aligning Work Execution to the KPIs are some of the most critical links in the process. The KPIs can be made actionable by linking to the appropriate Equipment Utilization Losses (see Uptime, March 2017).

Specific Objectives or Initiatives are determined from the KPIs; Organizational Structures are defined; specific Job Roles & Responsibilities (in various departments) are defined; and Work Processes are developed to define how work is to be performed. All of this leads to the flawless Work Execution that’s necessary to achieve the Business Goals (as in the pit crew example).

Seeking alignment

Aligning the work culture (an organization’s behaviors) with a line of sight to the organization’s business goals begins by communicating the Business Opportunity and how the organization needs to pull in the same direction to take full advantage of it.

Linking maintenance to business goals is only one of many alignments that must exist in successful enterprises. Thus, we must remember that a maintenance department alone cannot effectively maintain equipment and facilities. More and more, we’re learning that the maintenance function is a team sport that requires multiple disciplines (players) brought in at different stages in the life cycle of a physical asset.

Paying attention to maintenance-work processes and efficiency are good things to measure. It’s when we align the outcomes of those processes and efficiencies with business goals that maintenance truly becomes effective in a business model. MT

Bob Williamson, CMRP, CPMM, and member of the Institute of Asset Management, is in his fourth decade of focusing on the “people side” of world-class maintenance and reliability. Contact him at RobertMW2@cs.com.

615

6:23 pm
April 13, 2017
Print Friendly

Maintenance Efficiency: Understand It To Drive It

Various factors and measurements affect an organization’s ability to improve workforce efficiencies.

Worker of oil and gas refinery

By Al Poling, RAM Analytics LLC

It’s a given: Maintenance is the largest fixed cost in manufacturing. Maintenance-workforce efficiency has a profound effect on that cost and, in turn, overall business performance. Can that efficiency be improved and, if so, how?

The common metric used to measure this efficiency is wrench time. Research on wrench time has revealed maintenance workforce efficiencies ranging from 18% to 74%. In other words, inefficient maintenance operations will spend exponentially more on maintenance labor than the most efficient operations to complete the same amount of work.

To illustrate the significant financial impact of maintenance workforce efficiency, a highly efficient operation with 74% wrench time spends $100 million/yr. on maintenance labor. A highly inefficient maintenance operation would spend more than four times that amount (or more than $400 million annually) to complete the same volume of work. Translation: The inefficient maintenance operation would waste $300 million a year due to inefficiency.

Critical factors

Numerous factors influence effective use of maintenance labor resources. At the top of any list, however, is a well-defined maintenance-work process. This type of process describes, in detail, each step of maintenance work from identification through execution and closure. Despite claims to the contrary, there is effectively only one universally used maintenance workflow. The five major components are identification, planning, scheduling, execution, and closure:

Identification is the timely pinpointing and prioritization of maintenance work. These activities are performed by equipment operators who use a well-defined work-prioritization matrix or by maintenance coordinators who base priorities on business and related needs.

Planning is formal organization of the work to be done, including scope assessment and identification and procurement of the labor and materials required to complete the job.

Scheduling includes setting the optimum time period in which to complete the planned work. It takes into account the overall resources required at the site and attempts to level the resource load to use normally available maintenance resources.

Execution is the actual hands-on work performed by skilled maintenance craft personnel. This includes company personnel and contract maintenance workers.

Closure involves capturing work history, including critical information on failure modes used to facilitate reliability analysis.

Failure to have or follow a well-defined maintenance-work process results in chaos and, therefore, grossly inefficient resource utilization.

Tools and prep

The next factor that influences maintenance-labor efficiency is the availability of tools and materials required to complete the assigned work. Without that availability, work can’t be completed in a timely manner.

Wrench-time studies consistently reveal that traveling for tools and materials is the most common barrier to maintenance-workforce productivity. If highly skilled (and costly) maintenance-craft personnel have to spend time retrieving tools and materials, it will take significantly longer to complete the work, including possibly delaying completion. It’s troubling why so many organizations depend on highly skilled maintenance resources to perform such mundane work (material and tool transport) rather than assigning those tasks to less costly storeroom and/or delivery personnel.

Next in line as a detrimental impact on maintenance-workforce efficiency is the interface with operations. Equipment must be prepared in advance of maintenance work. Examples include equipment decontamination, lockout/tagout, and work permitting. If these types of tasks aren’t performed in a timely manner, wrench time will suffer. Paying highly skilled maintenance workers to stand around while operators perform such work—that should have been done in advance—is absurd. Yet, as wrench-time studies show, this is a common occurrence in today’s plants.

The culture effect

Empirical evidence suggests that particular work environments, or cultures, are more prone to maintenance workforce inefficiency. At the top of this list is an environment in which unreliable equipment reigns. In this type of reactive environment, it is virtually impossible to achieve high levels of maintenance-workforce efficiency. Unplanned failures, by their very nature, don’t facilitate planning and scheduling, leading to extremely inefficient and expensive reactive corrective work. As if this weren’t bad enough, it is invariably the value of lost production and subsequent lost profit that causes the greatest economic harm to the site and business. Sadly, these costs are often overlooked.

The next environment most prone to maintenance workforce inefficiency is one where maintenance labor costs are low. Southeast Asia, for example, experiences severe inefficiencies—often at appalling levels. In those regions, it’s not unusual to find human labor being utilized instead of equipment. For example, you might find large numbers of maintenance workers with shovels doing the work that a single bulldozer could complete in short order. Sometimes, though, this is by design, i.e., to create more jobs to support a growing middle class. Nonetheless, while it’s an expensive way to operate, the costs can be more easily absorbed due to exponentially lower-skilled maintenance-craft wages.

Surprisingly, highly reliable operations represent yet another, although not necessarily obvious, area where maintenance inefficiencies can be found. In such environments, the business is typically enjoying very high profit margins as a result of achieving maximum production with existing assets.

Of course, it’s human nature for people to focus on what’s important and overlook anything that’s deemed less so. Thus, in a highly reliable production environment, as profits rise, maintenance-cost management can take on a lower sense of urgency. In extreme cases, the inherent inefficiency can lead to anywhere from tens to hundreds of millions of dollars in unnecessary maintenance expense. Interestingly, this situation may also occur in less-reliable operations when the market is tight and profits are high. (It’s not uncommon for managers to remove any maintenance cost controls as long as sales demands are satisfied.)

In both of those scenarios, however, maintenance inefficiency will only be tolerated as long as profit objectives are being met. As soon as market conditions change, pressure will once again be applied to maintenance cost and, subsequently, to maintenance-workforce efficiency. The reaction to this often-sudden change can be quite ugly as arbitrary rules with the potential for unintended consequences, e.g., discontinuing proactive maintenance as a way to reduce maintenance labor costs, are put in place.

Effective measuring

In an ideal production environment, skilled maintenance resources are used efficiently and effectively. As the father of statistical process control W. Edwards Deming advised, “You can’t manage what you don’t measure.”

To ensure that maintenance resources are being efficiently and effectively utilized, they must be measured. Although not used extensively today, the early 20th century methodology of maintenance-work sampling provides an effective means to measure wrench time. (Despite exaggerated claims by some that this sampling is akin to Frederick Taylor’s infamous time and motion studies of the late 19th century, it is not.)

Maintenance-work sampling is simply a statistical tool that, when used effectively, can measure maintenance-workforce productivity. Identification and elimination of barriers to productivity can significantly increase the value-added contribution of existing maintenance resources. Work sampling is the process of capturing and analyzing a statistically valid number of random observations to determine the amount of time, on average, that workers spend in various activities throughout their normal workdays. Non-value-added activities are then targeted for reduction and/or elimination using root-cause analysis.

The maintenance-work sampling approach is based on the proven theory that the percentage of observations made of workers doing a particular activity is a reliable measure of the percentage of total time actually spent by the same workers on the activity. The accuracy of this technique is, naturally, dependent upon the number of observations. To achieve a 95% confidence level in the results, approximately 3,000 observations must be made and recorded. While this might seem excessive, a single trained observer can collect that number of observations during a week of single 8- or 10-hr.maintenance work shifts.

Keep in mind that maintenance-work sampling makes it possible to measure utilization of work groups and the overall maintenance workforce. Key opportunities that warrant attention can be isolated and examined. A good example is that of travel time involved in obtaining requisite maintenance tools and materials and delivering them to where they will be used. That time can be accurately measured and a cost assigned simply by taking the number of total hours consumed by the activity and multiplying by the hourly rate.

Additionally, with maintenance-work sampling, unique factors that affect maintenance wrench time can often be identified. For instance, if inadequate means of communication exist between a work group and the supervisor, valuable time can be wasted tracking each other down. Radios or mobile phones, can solve this problem.

Screen Shot 2017-04-13 at 1.06.43 PM

Screen Shot 2017-04-13 at 1.07.01 PM

The accompanying charts (Figs. 1 and 2) are based on a real-world case study where work sampling was leveraged to identify and eliminate maintenance-workforce inefficiencies. Figure 1 depicts a decline in non-value-added activities, while Fig. 2 depicts an increase in value-added activities.

Screen Shot 2017-04-13 at 1.07.16 PM

Screen Shot 2017-04-13 at 1.07.22 PM

As these charts show, initial measurement of the site’s maintenance-workforce wrench-time revealed a mere 28% value-added work (wrench time). Through the systematic reduction and/or elimination of non-value-added activities over the course of three years, the wrench time rose to 74%. What really matters here, however, is the recovery of the value of time that was being wasted, as shown in Table I. (Efficiency gains can also be measured in terms of full-time-equivalents, as shown in Table II.)

As part of its development and publication of standard reliability and maintenance metrics, the Society for Maintenance and Reliability Professionals (SMRP, Atlanta, smrp.org) published its work-management metric, 5.6.1 Wrench Time, in 2009. The stated objective of this metric is “to identify opportunities to increase productivity by qualifying and quantifying the activities of maintenance craft workers.”

The Society also published the SMRP Guide to Maintenance Work Sampling, in 2012. As one of three co-authors, I can state definitively that the intent of this publication was to educate younger reliability and maintenance professionals who had not been exposed to maintenance-work sampling. Although adoption has been slow, several companies are beginning to include this sampling methodology as a valued component in their reliability and maintenance tool kits. Ironically, sites are often introduced to maintenance-work sampling by maintenance contractors who want to demonstrate the efficiency and effectiveness of the skilled maintenance-craft personnel they provide.

(Editor’s note: SMRP’s Guide to Maintenance Work Sampling is a simple “how to” document that includes statistical tables designed to help users understand the correlation of the confidence level associated with a number of observations. The guide can be purchased for a small fee at SMRP.org. The co-authors donated their time to the development and publication of this document and receive no royalties from its sale.)

Last words

While it might be enticing to simply reduce the number of skilled maintenance craft workers on site as wrench time increases, a more prudent path may be to redeploy resources and invest in failure-prevention activities and/or infrastructure.

Increased wrench time may also provide an opportunity to reduce overtime as resources become available and/or to reduce the reliance upon third-party maintenance resources. With today’s critical shortage of skilled maintenance workers, however, displaced workers would likely be able to secure employment elsewhere.

In summary, maintenance wrench time plays a significant role in measuring efficient utilization of skilled maintenance-craft personnel. This valuable metric can be used by any manufacturing operation to ensure that it is realizing the greatest return possible from its investment in human capital. MT

Al Poling, CMRP, has more than 36 years of reliability and maintenance experience in the process industries. He served as technical director for the Society for Maintenance and Reliability Professionals from 2008 to 2010. Contact al.poling@ramanalytics.net.

Navigation