Archive | Reliability

9

6:16 pm
May 3, 2016
Print Friendly

Predicting Maintenance at Hannover MESSE

One of the specialty areas set up at the Hannover MESSE show (April 25 to 29, Hannover, Germany) was called predictive maintenance. It was a rather mixed bag of equipment/brand-specific offerings and predictive maintenance “tools” for general use. Here’s what some of the exhibitors had to offer.–Gary L. Parr, editorial director

predict01
They weren’t in the actual predictive-maintenance area, but Azima DLI, Woburn, MA, was exhibiting their Trio C10 Series ruggedized 10-in. tablets. The tablets are vibration data collectors and diagnostic instruments. The CX10 is a diagnostic data collector/expert analyzer and the CA10 is a vibration data collector/field analyzer. They are loaded with the company’s ExpertAlert diagnostic software.

predict02
Festo, the pneumatics and automation company based in Hauppauge, NY, demonstrated a predictive software component for their systems that takes advantage of Internet of Things technology to monitor all aspects of the automation system.

predict03
Hydac Filter Systems, Bethlehem, PA, demonstrated a turnkey fluids condition monitoring unit that can be used in retrofit and new hydraulic applications. The unit uses an optical particle counter and a multi-parameter sensor that measures temperature, water content, conductivity, and dielectric constant.

predict04
Asseco Solutions AG, Karlsruhe, Germany, offered their Smart Connected Solutions software, which is a subscription-based service that helps companies map all of their service and maintenance processes. The software manages data from individual sensors to deployment planning and on-site maintenance and documentation. SCS can be linked, using standard interfaces, to a wide range of ERP solutions, in addition to supporting processes such as invoicing. (An English version of the site doesn’t appear to exist.)

predict05
Bruel & Kjaer Vibro, Darmstat, Germany, demonstrated their turnkey vibration monitoring system. The system can be used on any rotating machinery, consists of all necessary hardware and software, and is scalable from a single machine to an entire plant. They also offer installation service training.

predict06
Aventics Corp., Lexington, KY, was showing their sensors and software system for monitoring pneumatics. The Industry 4.0-ready system monitors all aspects of a pneumatic system, including shock absorbers, positioning, and speed. Software tracks and analyses data, providing reports of declining performance.

40

5:05 pm
April 14, 2016
Print Friendly

Video | Deep Dive on Condition Monitoring Services

Kory Chance, instrumentation and controls technician at the City of Ames, Iowa municipal power plant discusses some of the benefits in moving to a valve condition monitoring service from Emerson Process Management. Chance reveals the benefits of having an outside condition-monitoring service for such a small operation and be able to remove certain preventative maintenance routines.

13

8:04 pm
April 11, 2016
Print Friendly

Heed These IR Safety Tips

Thermogram shows hot spot on dry-type transformer at the jumper connection.

Thermogram shows hot spot on dry-type transformer at the jumper connection.

By James Seffrin, Director, Infraspection Institute

When working in a new facility or plant area for the first time, infrared technicians may encounter safety rules that are new or different. Thus, it’s important for thermographers to review safety requirements with project managers prior to beginning any new work.

When contacting a project representative concerning safety, ask these questions:

  • What general safety training and/or site-specific training is required?
  • Is special clothing, shoes, or other personal-protective equipment required?
  • Can infrared and related test equipment be used in the subject areas?
  • Are respirators or additional safety equipment/monitors required?
  • Will the work involve hazardous locations such as confined spaces, scaffolding, or other types of elevated platforms?
  • What medical conditions might preclude a person from working in the subject area(s)?
  • Are there site-specific emergency procedures, including evacuation, designated rally spots, and how to report an incident?

Once the project commences, be sure to maintain good situational awareness and always stay with your qualified assistant. Becoming familiar with area safety rules in advance of a project can help to avoid cancelled projects and embarrassment, while helping maximize safety.” MT

Electrical-Inspection Safety: It Takes Two

If you are a thermographer who performs infrared inspections of electrical-distribution systems, you are not alone—and you never should be. Working alone near exposed, energized electrical equipment is not only dangerous, it’s a violation of federal law.

Administered by OSHA, the Occupational Safety and Health Standards for General Industry, 29 CFR, Part 1910 apply to most thermographers working within the United States or its territories. Specifically, 1910 Subpart R covers the operation and maintenance of electric-power generation, control, transformation, transmission, and distribution lines or equipment. Covered facilities include utilities and equivalent industrial establishments.

According to Subpart R, prior to commencement of work, medical and first-aid supplies must be provided for, including persons trained in first aid and CPR when work is on or near exposed lines or equipment energized at greater than 50 volts. Since CPR cannot be self-administered, at least two people trained in first aid and CPR must always be present when working near most exposed energized equipment.

Remember: Having a second CPR-trained person along will not only satisfy OSHA requirements, it may save your life.

Jim Seffrin, a practicing thermographer with 30+ years of experience in the field, was appointed to the position of director of Infraspection Institute, Burlington, NJ, in 2000. This article is based on two of his “Tip of the Week” posts on IRINFO.org. For more information on safety and other infrared applications, as well as various upcoming training and certification opportunities, email jim@infraspection.com or visit infraspection.com.

37

7:59 pm
April 11, 2016
Print Friendly

Select & Safely Operate Backup Generators

Power Transmission Line. Lightning strike. 3d render

When lightning strikes, backup generators become valuable tools. As with anything else in a plant or job site, safety should be the top priority.

Electrical outages caused by severe storms and disasters can be mere inconvenience or a serious problem. Whatever the origin and extent of an outage, backup generators offer a reliable power source and great peace of mind. As with all things electrical, though, the incorrect use of generators can create potentially hazardous situations—for end-users and electricians, as well as for utility workers who install and maintain power-distribution systems.

The Energy Education Council’s “Safe Electricity Program” recently outlined crucial considerations in selecting and safely operating the right generator for an application. Keep this advice in mind at work and at home.

Decide what needs to be powered.
What appliances, devices, and equipment are essential? Choose a generator size that can handle the full load of the estimated power needed. Note that it takes more power to turn an appliance on—its surge power—than it does when in continuous operation.

Stand-by or portable.
Stand-by generators are permanently wired units installed by a professional electrician. The installation should include a transfer switch that prevents feeding electricity back into overhead lines, which can be deadly for linemen. These generators are fueled by natural gas or propane from existing gas lines and automatically turn on in the event of a power outage.

Portable generators are typically fueled with diesel or gasoline, which must be regularly refilled. Unlike stand-by units, these must be turned on and off manually, and appliances must be directly plugged into the generator with a suitably rated extension cord.

Be aware of local ordinances.
Depending on location, electrical, positioning, or noise, codes may apply to operating or installing backup generators. Local electrical contractors or generator dealers can help with the selection of code-compliant units.

Operate safely.
Once a generator is installed and ready to run, heed these guidelines to ensure safe operation:

  • Thoroughly read and follow all manufacturer instructions to properly ground the generator before turning it on.
  • Do not connect portable generators directly to an electrical system. Doing so could re-energize overhead power lines and endanger the lives of utility linemen working to restore power.
  • There should be nothing plugged into a portable generator before starting it to prevent a surge from damaging the appliance.
  • When running a portable generator, always use properly rated extension cords (length and load) when connecting appliances.
  • Always operate portable generators in a well-ventilated space to avoid
    carbon monoxide poisoning and other harmful fumes. Never operate a generator indoors.
  • Generators can pose an electrical risk when operated in wet conditions. Make sure the generator stays dry during its operation, and never touch electrical equipment with wet hands.
  • Exercise caution around portable generators, which have exposed engine parts that could burn or injure individuals. Keep children and animals away from running generators.
  • Exercise care when refueling portable generators to prevent potential fires
    and spills.
  • Properly shut down portable generators by turning off and unplugging all appliances and equipment they are powering.
  • Remember to perform regular maintenance before and after each use. For portable generators, inspect oil and fuel filters, oil level, spark plugs, and fuel quality. Stand-by generators require less maintenance, but should still be inspected before and after power outages. MT

For more information about choosing and safely operating a backup generator, visit SafeElectricity.org.

The Energy Education Council, Urbana-Champaign, IL, is a 501(c) (3) non-profit organization dedicated to promoting electrical safety and energy efficiency. Established in 1952, and headquartered within Univ. of Illinois Extension, the Council serves as a forum for diverse utility and energy organizations to collaborate on the mutually vital issues of efficiency and safety. Learn more at EnergyEdCouncil.org.

36

7:49 pm
April 11, 2016
Print Friendly

Choose The Right Emergency Stop

With today’s number of customizable available options, selecting the right emergency stop (e-stop) for process equipment can be a daunting task, but it’s critical for overall safety. According to human-machine-interface (HMI) experts at EAO Corp., Shelton, CT, fitting equipment with a highly functional e-stop in line with the basic application design concept, versus a lesser-certified safety switch, is key. MT

Determine if your application requires Category 0 or Category 1 shutdown.
This is crucial in the placement, size, electrical specifications, mechanical characteristics, color, and number of required e-stops.

Research international and North American standards, performance ratings, and codes that govern your application (see table below).
Each industry has unique regulatory standards. These restrictions may govern factors such as size, color, and contact terminals.

Select the product.
Choose your e-stop based on design factors to meet industry demands and international compliance. Proper selection involves understanding market and application requirements, environmental conditions, and electrical demands.

Accessorize.
Vendors often provide a variety of unique features to enhance your e-stop and complete virtually any application. It’s important to research these additions as some accessories may be mandated by industry standards.

Consult an expert.
Many suppliers offer consultative services to assist customers throughout the process of selecting and integrating their HMI needs, from individual e-stops to completely designed and produced ‘mixed technology’ solutions.

For more information on e-stops and other HMI components and systems, visit www.eao.com.

Screen Shot 2016-04-11 at 2.46.56 PM

Screen Shot 2016-04-11 at 2.47.23 PM

868

8:26 pm
February 8, 2016
Print Friendly

Calculate the True Cost of Unreliability

1602ftruecost_AdobeStock_39372682.jpeg

The economic impact on manufacturers that haven’t bought into the idea of failure-free operation is easy to determine and, more important, enormous.

By Al Poling, CMRP

Although experts have espoused the virtues of equipment reliability for decades, countless manufacturing operations still suffer significant and unnecessary downtime due to equipment failure. Apparently these manufacturers haven’t bought into the benefits of failure-free operation. What will it take to get them to accept the time-proven benefits of reliability? Perhaps they will never be convinced by examples of other manufacturing operations, believing that they are somehow unique. If the benefits derived through reliable operation won’t lead them to change, perhaps an examination of the true cost of unreliability will.

The big picture

Businesses operate under the basic equation of: profit = sales minus cost. Although equipment failures affect both sides of the equation, this article focuses on the impact of unreliability on maintenance costs—typically the largest fixed costs in a process-industry manufacturing facility. End users can apply the following calculations from a hypothetical plant to their own business and develop an order-of-magnitude estimate of the impact of unreliability on maintenance costs at their site(s).

For purposes of these calculations, let’s assume our hypothetical operation has a plant replacement value (PRV) of US$1 billion and a resident maintenance workforce of 150 craft-level employees.

Maintenance-labor cost

Maintenance costs in a plant include those for skilled craft labor to repair and restore equipment to good operating condition following a failure. The current average U.S. Gulf Coast, fully loaded, maintenance skilled-craft wage rate is approximately $45/hr. Using the U.S. standard of 2,080 hr./man-year, with an estimated overtime rate of 5%, the cost/year/skilled craft worker is approximately $100,000. Consequently, 150 skilled craft workers will cost approximately $15 million/year. In terms of man-hours, including overtime, the number is about 300,000 man-hour/year.

Benchmarking studies have confirmed that best-performing plants average 1% downtime due to unreliability/year, while average performers suffer 7% downtime due to unreliability. These numbers include annualized downtime for turnarounds. To calculate the annualized downtime for turnarounds, simply take the total downtime for your last turnaround and divide it by the number of years between turnarounds. A 30-day turnaround taken every three years equals 10 days of annualized downtime due to the turnaround alone.

Best performers average less than four days of downtime/year due to unreliability, including annualized downtime for turnarounds. Average performers endure more than 25 days of downtime/year due to unreliability.

There is a direct correlation between the number of equipment failures and the number of craft workers required to effect repairs. In theory, the average-performing manufacturer would have seven times more maintenance craft workers than the best performer. That, however, is in theory only. Achieving and sustaining failure-free operation requires truly skilled craft workers and, even they have to focus their efforts on failure avoidance instead of repair.

Work sampling studies have revealed that the efficiency of maintenance-craft workers is extremely high in highly reliable operations, as their work is well defined and scheduled in advance. In comparison to reactive maintenance, schedule interruptions happen on an exception basis in a failure-free environment. Instead of seven-times as many skilled craft workers needed in an average-performing plant, we’ll estimate (conservatively) that the number is half that (or three and a half times).

With regard to maintenance labor, the cost of unreliability is the difference between the number and associated cost of skilled craft workers required to support a reliable operation versus an unreliable one. Assuming that the aforementioned 150 such workers, costing $15 million/year, are working in an operation suffering average unreliability, the additional maintenance labor costs are 70% of the total—$10.5 million/year. In this example the true cost of unreliability in skilled craft workers is an additional 105 such workers costing an additional $10.5 million/year, whereas a reliable operation would only need 45 skilled craft workers. This calculation does not factor in the elimination of overtime that would be found in a failure-free environment. While equipment still fails, the impending failure is discerned well in advance so repairs can be made during normal maintenance work hours.

Screen Shot 2016-02-08 at 1.14.13 PM

Maintenance-material cost

Repair material is another major element of maintenance costs. Unfortunately, the ratio of maintenance-material cost to maintenance-labor cost varies by region due to differences in the prevailing wage and the availability (or lack) of repair materials. Equipment’s material of construction also factors into material-to-labor ratios.Maintenance-material cost

A reasonable hypothesis is to use a one-to-one ratio of maintenance material to maintenance labor. Applying this ratio to our hypothetical plant with 150 maintenance craft workers at a cost of $10.5 million/year means the site spends another $15 million on maintenance-repair material annually. Using the same approximation as we used with maintenance labor, 70% of these material costs would be avoidable if the plant were operating in a failure-free mode. In monetary terms, this represents yet another $10.5 million attributable to unreliability.

Screen Shot 2016-02-08 at 1.15.16 PM

Equipment-replacement cost

In consequential failures, equipment cannot be repaired and, thus, must be replaced. Benchmarking studies have shown that manufacturing operations running their equipment to failure spend exponentially more than best performers spend on maintenance capital, i.e., equipment replacement.Equipment-
replacement cost

Manufacturers that take care of their equipment and embrace failure-free operation derive extraordinary service-life from that equipment. Conversely, those who operate in a run-to-failure mode wear out equipment quickly.

Run-to-failure is a particularly costly maintenance strategy. Best performers will spend 1% or less of their PRV each year to replace equipment that has reached the end of its useful life. In contrast, average performers will spend 3% to 5% annually on replacement equipment. Determining the true cost of unreliability, therefore, requires factoring in the price tag for equipment replacement.

A reasonable assumption is that best performers spend 0.5% of PRV and average performers spend 4% of PRV on annual equipment replacement. That means, based on our hypothetical plant, with a PRV of US$1 billion, a best performer would be spending approximately $5 million annually on equipment replacement due to unreliability, and an average performer would be spending approximately $40 million annually. Thus, in our hypothetical example, the true cost of unreliability reflects an additional $35 million/year for equipment replacement.

Screen Shot 2016-02-08 at 1.16.14 PM

Additional costs

Another significant maintenance cost involves maintenance administration and staff. Granted, there is not a direct correlation between the number of maintenance salaried personnel and maintenance wage personnel. Still, there are common ratios of salaried to hourly wage personnel—and they differ dramatically between better and poorer performers. Merely reducing numbers of skilled craft workers, though, doesn’t translate to an equal percentage reduction in staff. For example, in average-performing operations, there may be more maintenance supervisors, but the ratio of craft to supervisor positions is higher. In best-performing operations, the ratio of maintenance supervisors to craft personnel is lower. This situation results from recognition of the value of maintenance supervisors as facilitators who can greatly enhance the efficiency of a maintenance workforce.Additional costs

A similar condition exists with maintenance planners. Poor performers have larger numbers of skilled craft workers/maintenance planners—with some of the worst performers in the range of 60:1. An individual maintenance planner can’t effectively serve such a large number of skilled craft workers—and is likely operating in a reactive mode, expediting materials or performing other duties required to support reactive maintenance.

In contrast, the ratio of skilled craft workers to planners at a best-performing site is more apt to be in the 20:1 range. With this type of ratio, a planner can prepare detailed job plans, procure materials, and efficiently perform other planning functions. The net result is that there will be no appreciable administration and staff cost savings in moving from a run-to-failure to failure-free environment. This is due to changes in ratios of craft to staff positions and the redeployment of some personnel from reactive work to proactive functions that are needed to support failure-free operations.

Additional maintenance costs affected by unreliability involve facilities, including offices, shops, break rooms, restrooms, and related infrastructure costs. Rolling-stock requirements can also be affected, as can various support staff outside of the maintenance function, such as human resources, training, and safety. Generally speaking, though, there is no substantive reduction in administration, staffing, and related cost categories as a result of reducing and/or eliminating unreliability.

The bottom line

As discussed here (and shown in the accompanying sidebar), the true cost of unreliability is enormous. By adding up the previously noted line-item maintenance costs for our hypothetical plant, we can see that unreliability amounted to a staggering $56 million (or 80%) of unnecessary spending for maintenance labor, materials, and equipment replacement costs.

Given this type of economic impact of unreliability, why don’t all manufacturing operations transition from failure-prone to failure-free environments? Unfortunately, there’s no single root cause. Many factors contribute to the situation. Among them:

The constant distraction of equipment failures is akin to putting out fires. Consequently, everyone is so focused on reacting that they believe they can’t take the time to implement measures to avoid the failure. A fairly simple solution here would be to devote a small number of employees to developing and implementing plans to avoid equipment failures. For this approach to be effective, however, those proactive resources can’t be dragged back into firefighting mode. Otherwise, nothing will improve.

Poorer-performing operations rarely have a strategic plan or, if they do, it’s typically mere window-dressing written to satisfy corporate management. Without a well-thought-out vision or mission, plant personnel will naturally accept the status quo as the normal mode of operation.

There is a lack of leadership in poorer-performing manufacturing operations. Either the current management lacks the requisite leadership skills or there are no incentives positive or negative to change the status quo. Humans respond to stimulus. If there are no consequences for being unreliable, nothing will change. Conversely, if there are no rewards for becoming reliable, or if the existing reward system somehow perversely rewards unreliable behavior, nothing will change. Better-performing manufacturing operations typically share the benefits of failure-free operation with all employees. As a result, everybody has a stake in improved reliability. 

While this discussion used a hypothetical manufacturing site to illustrate the true cost of unreliability, the same ratios can be applied to obtain an order-of-magnitude estimate of the cost of unreliability for your operations. Remember, though, that someone needs to take the initiative before improvement can begin. MT

Al Poling has more than 35 years of reliability and maintenance experience in the process industries, many of them spent in engineering and corporate-leadership roles with several companies. A Certified Maintenance and Reliability Professional (CMRP) through the Society for Maintenance and Reliability Professionals (SMRP), he served as technical director of the organization from 2008 to 2010. Prior to starting his own consultancy, Poling served as the project manager for Dallas-based Solomon Associates’ International Study of Plant Reliability and Maintenance (RAM) Effectiveness, during which he worked with clients to identify performance improvement opportunities through benchmarking. For more information, contact al.poling@ramanalytics.net.

Unreliability: A Very Expensive Proposition

The three largest maintenance-cost categories affected by unreliability are maintenance labor, maintenance material, and maintenance capital, i.e., equipment replacement. In our hypothetical manufacturing operation with a plant replacement value (PRV) of US$1 billion and resident workforce of 150 skilled craft workers, we can calculate the cost of unreliability individually and collectively as follows:

Screen Shot 2016-02-08 at 1.17.42 PM

$70,000,000 = Total current annual maintenance cost for labor, material, and maintenance capital, i.e., equipment replacement.

80% = Percentage of the total maintenance labor, maintenance material, and maintenance capital spent unnecessarily due to unreliability.

At first glance, these figures may appear unrealistic. They’re not. The harsh reality is that unreliable operation is very expensive for any manufacturer, regardless of size.

learnmore“The Business Case for Asset Reliability”

“Choose Reliability or Cost Control”

“The Risk Is In The Management”

“Reliability Business Case: Conversion Costs”

1382

8:18 pm
August 6, 2015
Print Friendly

Ultrasound: Aural Intelligence

0815ultrasound1

A recent three-day conference that connected ultrasound experts with maintenance professionals delivered some key points about this predictive technology.

By Rick Carter, Executive Editor

The ranks of those who use ultrasound for predictive-maintenance purposes are growing. The trend is evident on factory floors and at conferences devoted to the technology, such as UE Systems’ (uesystems.com) recent 11th annual Ultrasound World/Reliable Asset World event. Held in June 2015, in Clearwater Beach, FL, a record number of attendees was treated to presentations that blended detailed information about ultrasound usage with practical perspectives on how ultrasound fits with efforts to build and maintain reliability-based cultures.

Two standout presentations—“Using Ultrasound for Effective Slow-Speed Bearing Monitoring” by Ron Tangen, maintenance engineering specialist, Dakota Gasification Co., Beulah, ND; and “Utilizing Ultrasound as a Foundational Technology When Embarking on a Reliability Transformation” by Mike Casey, reliability engineer, Mueller Co., Chattanooga, TN—were excellent examples of the experienced-based information Ultrasound World promised and provided.

A UE Systems Ultraprobe 15000 Touch ultrasound gun is used to monitor an internal bearing. This unit includes an on-board camera, infrared thermometer, laser pointer, and the ability to store data, sounds, and images.

A UE Systems Ultraprobe 15000 Touch ultrasound gun is used to monitor an internal bearing. This unit includes an on-board camera, infrared thermometer, laser pointer, and the ability to store data, sounds, and images.

Ultrasound for slow-speed applications

Ron Tangen’s presentation focused on how his efforts to predict bearing failures at Dakota Gasification Co.—owner and operator of  the Great Plains Synfuels Plant in Beulah, the only commercial-scale facility in the U.S. that manufactures natural gas from coal—led him to ultrasound for slow-speed applications. Though his team now uses ultrasound for many applications in the plant, before its widespread use, ongoing failure issues with the plant’s many slow-speed bearings on coal-handling conveyors had been a problem.

“Operators would walk around on a weekly basis and listen and look at these bearings,” said Tangen. “If they felt there was a problem they would also touch them and maybe use a hand-held, infrared pyrometer to check temperature. But this predictive-maintenance strategy is at the bottom of the PF curve [a designator of the interval between “P—potential failure” and “F—failure”]. And, while they did find problems and got some bearings out of the system before they catastrophically failed, being so close to the end of the PF curve, they would often get done with a route and a few days later have a catastrophic failure.”

Tangen discussed the issue with the plant’s rotating-equipment engineers. “They have a robust vibration program,” he said, which worked well on high-speed bearings, but not on slow-speed. With infrared nearly as ineffective, Tangen turned to ultrasound and tested his idea. When the results proved positive, he established routes that took ultrasound-equipped operations team members to the conveyors’ many slow-speed bearings—bearings whose problems had been previously undetectable prior to failure with infrared or vibration due to their slow speeds. “Now that we’ve been doing this for five years, and after listening to a few thousand bearings,” he said, “you start to see the patterns.”

The results of routine ultrasound testing include hard-to-refute sound files of bearing disintegration. “I first thought I could give a two-week or two-month heads-up on catastrophic failures,” said Tangen, “but the ultrasound technology is sensitive enough that you can track a bearing fault through its lifetime.” By plotting the decibel readings for each given bearing and, as they accumulate, drawing a straight line through the points, he can “normalize” the data to provide an overall direction for the readings. “This enables me to project where I can potentially expect that bearing to be over time,” he said. “Right now I’m beginning to look at bearings we’ll need to pull in 2016.”

Tangen has reluctantly accepted that he’s viewed by some colleagues as having crystal-ball talents. “If you tell a lot of people that you’re predicting slow-speed bearing failures a year in advance, they might think you’re a little crazy,” he said. But they clearly like his information. In a recent meeting with operations and maintenance leaders, Tangen said “the only thing they wanted more of was my predictive report.” They asked if his standard 12-month view of predicted bearing failures could be shortened to quarterly to allow for better planning. “I’m not quite at that point yet,” said Tangen, “but I thought it was a positive note that they have seen enough value in the program to where they want more data more often.”

Ultrasound audio files show the difference in sound emitted by a good bearing (top), and a bearing that is failing.

Ultrasound audio files show the difference in sound emitted by a good bearing (top), and a bearing that is failing.

Ultrasound and reliability

For presenter Mike Casey, who came to Mueller Co. in 2012 from Allied Reliability Group, Charleston, SC, ultrasound was a key part of his task to establish a reliability-based culture at his new company, a maker of water-distribution products. “It was difficult knowing where to start,” he said. “When I got here we had an ultrasound gun that was used, maybe not correctly, and it needed to be upgraded. So I had two elements to work with: I had to get the funds for an upgraded model and I needed to have the people ready to use it and want to use it. I had to have more than a work order that said ‘listen.’ I needed them to go find things.”

His plan involved getting multiple members of his maintenance crew trained to use the company’s existing ultrasound gun. “Any win we could get with that would be beneficial in my request for a new unit,” he said.

Casey built on an earlier approach undertaken at the plant that had used an outside service to identify and tag compressed-air-system leaks. He trained his team to detect those types of leaks, and distinguish them from other sounds in the plant, particularly those of intentional “leaks” where compressed air is used to blow off or move material.

“I felt comfortable training them,” said Casey, who is also a Level 3 vibration analyst, “but it’s worth every penny to send that person to the OEM [for training]. It also depends on finding the right person. You can put an ultrasound gun in anyone’s hands and they can use it, but you really need that person who is interested and wants to do it. This is not necessarily the most senior guy,” he added. “The process can be grueling. It’s hot, walking, climbing. You need someone who is willing to do all of that. I would caution against randomly picking somebody and hoping for the best. You have to roll it out correctly and get the training. There will be missed calls—these aren’t crystal balls—but if you can minimize those, the technology and the program has a chance.”

It also helps that ultrasound (like infrared) comes with a powerful sensory impact. While vibration plots can “make some people’s eyes glaze over,” said Casey, “if I can show someone a colored picture that shows a temperature differential or have them listen to a sound file and actually take them to the equipment and have them put on the headphones and listen to this and demonstrate what’s going on, that’s where these technologies allow for faster buy-in. It’s more tangible, and I can make the point a lot quicker.”

Casey’s efforts to convince his management of the need to upgrade its ultrasound equipment were successful and not as difficult to achieve as he had expected them to be. “I did go with my guns loaded—I had those findings in my back pocket—but I probably could have sold it without them because the company knew they had to spend some money to get a program going. Like most companies, though, I think they didn’t know how much they had to spend or what they had to do. There was a corporate openness to getting these tools in the house, but you had to maybe put someone like me in there to make it work.”

Casey offered other suggestions for those looking to start or expand an ultrasound program. “Don’t be afraid to experiment,” he said. “Get the training and let that person go. That’s how I found some of the unique applications I did, just going out there and asking, ‘What is this supposed to sound like?’ It’s about identifying issues. The whole idea behind ultrasound is to identify problems ahead of time and come up with ways to eliminate them forever. You need to capture that data, learn how that failure was caused, and eliminate it.”

Casey’s ultrasound program has improved his company’s uptime and maintenance success. “But we still have to make product, which still produces emergency work, so it’s a juggling act,” he said. “That’s why these programs take time to mature. But when management sticks by them, and they give it time, we get our wins and we brag about them. And that’s another important piece of programs like this. You have to brag. You have to advertise those gains. You have to let them know.”

The 2016 UE Systems Ultrasound World/Reliable Asset World event is scheduled for May 10 to 13 in Clearwater Beach, FL. MT

0815ultrasound4If ultrasound is new to you, visit the Resource section of the UE Systems Inc. website at uesystems.com to learn the basics. Pay particular attention to the Sound Recording Library in which you can hear the sounds made by various devices in good and/or failing condition.

Ultrasound: A Multi-Use Industrial Technology

Ultrasound—literally “beyond sound”—refers to acoustic (sound) energy in the form of waves with frequencies above 20,000 Hz, the highest frequency to which the human ear can respond. In addition to its use for predictive-maintenance purposes, ultrasound has many other industrial uses, especially in processing applications. These include:

  • Cleaning of equipment and process material
  • Cutting
  • De-foaming
  • De-gassing
  • De-scaling of plant equipment, evaporators, or pipework
  • De-watering/drying
  • Extrusion
  • Fermentation
  • Filtration
  • High-shear mixing
  • Liquid/solid separation and dispersion
  • Nanotechnology
  • Particle de-agglomeration
  • Sieving
  • Spraying/spray drying/atomization
  • Waste/sludge effluent treatment
  • Welding.

Source: innovativeultrasonics.com

Navigation