Archive | Reliability

56

6:39 pm
May 15, 2017
Print Friendly

Understand Motor/System Baselines

Want to get the most from your electric motors? Think of St. Louis-based EASA (Electrical Apparatus Service Association,  easa.com) as a treasure trove of practical information and its members as a “go to” source for help with specific applications. Consider this insight on motor/system baselines.

— Jane Alexander, Managing Editor

According to EASA’s technical experts, changes in motor/system vibration readings provide the best early warning of developing problems in a motor or system component. Other parameters to monitor may include operating temperature of critical components, mechanical tolerances, and overall system performance, including outputs such as flow rate, tonnage, and volume.

Motor-specific baselines incorporate records of electrical, mechanical, and vibration tests performed when units are placed in operation or before they’re put in storage. Ideally, baselines would be obtained for all new, repaired, and in situ motors, but this may not be practical for some applications. These baselines typically include some or all of the following:

randmLoad current, speed, and terminal voltage

Changes in these parameters usually indicate that a vital system component is damaged or about to fail. Other electrical tests may include insulation resistance, lead-to-lead resistance at a known temperature, no-load current, no-load voltage, and starting characteristics.

QUICK TIP: Some changes in the current and speed may be normal, depending on the type of load.

Motor current signature analysis (MCSA)

This test diagnoses squirrel cage rotor problems, e.g., broken bars or an uneven air gap. It’s more accurate if a baseline is established early in the motor’s life.

Mechanical tests

These normally consist of measuring shaft runout (TIR) and checking for a soft foot.

Vibration

Although overall vibration readings can be used as baseline data, Fast Fourier Transform (FFT) spectra in all three planes at each bearing housing are preferred (see “Vibration Analysis” on page 22). Shaft proximity probes can be used to determine sleeve bearing motor baselines.

Infrared thermography

This tool can detect changes in the operating temperature of critical motor components, especially bearings.

New-motor baselines

Comparing factory terminal winding resistance and no-load amps with data taken under load can be useful when monitoring the condition of a new motor or troubleshooting system problems. Factory baselines are often available from the manufacturer or its website. The accuracy of factory data depends on how it was obtained, but it’s usually sufficient for field use.

Baseline data for a newly installed motor could reveal an error, e.g., misconnection for an incorrect voltage, and prevent a premature motor failure. Rather than simply “bumping” a motor for rotation before coupling it to the load, operate it long enough to measure the line current for all three phases, as well as the voltage and vibration levels.

QUICK TIP: Comparing the baselines of a failed motor and its replacement could reveal application- or process-related weaknesses in the system.

Repaired motor baselines

Service centers usually provide no-load and/or full-load (when stipulated) test data for repaired motors, including voltage, current, and vibration spectra. Comparing these results with historical baselines and those obtained on site when the motor is returned to service may confirm the quality of the repair or possibly reveal underlying system problems. For example, increased vibration levels in on-site tests might indicate a deteriorating motor base or a problem with the driven equipment rather than a balancing issue with the motor.

With newly repaired motors that have been in operation for many years, baseline comparisons are invaluable in root-cause failure analysis and may even expose consequential damage from certain kinds of failures, e.g., a broken shaft. To correctly identify cause and effect and prevent recurrences, always investigate equipment failure at the system level. MT

For details on using motor/system baselines, as well as expert advice on a wide range of other motor-related issues, download Getting the Most from Your Electric Motors, or contact a local EASA service center.

105

6:11 pm
May 15, 2017
Print Friendly

Slurry-Pump Tips: Extend Mechanical Seal Life

Selecting the right pump with the right type of mechanical seal is the first step toward slurry-pumping success. (Photo copyright ITT Goulds Pumps)

Selecting the right pump with the right type of mechanical seal is the first step toward slurry-pumping success. (Photo copyright ITT Goulds Pumps)

Although you may consider mechanical seals to be relatively small components in slurry-pumping systems, they can be the crucial bridge between failure and success. An incorrect or poor seal selection can cause major damage to the pumping system. The bottom line: If your operation wants to get the most from its slurry pumps, the choice of mechanical seals is crucial. Fluid-handling experts at Crane Engineering (Kimberly, WI, craneengineering.net) offer several tips for extending the life of these components.

— Jane Alexander, Managing Editor

Seal Considerations

As discussed in a recent blog post on craneengineering.net, increasing slurry-pump reliability starts with an understanding of the challenges involved in moving highly abrasive fluids such as manure, cement, and starch. These pumps clearly have their work cut out for them. Thus, when selecting a mechanical seal for slurry service, pay attention to these details:

randmRobust design characteristics. Heavy slurry usually involves a high solid content. A seal design that can withstand erosive impacts while protecting the seal faces is a must. Specially designed seals for slurry applications typically feature durable construction materials, hardened faces, and heavy-duty springs to ensure the seal faces have the correct pressure setting to seal the system.

Restriction bushings. When pumping a slurry mixture, process pressure will naturally drive the particle-filled fluid into the sealing interface, causing abrasion and accelerated wear. A restriction bushing isolates the mechanical seal from the harsh process so that the seal is mostly sealing the cleaner, cooler flush fluid.

Proper flushing. A proper flushing plan will keep abrasives away from the seal faces. Seal flushing also keeps things moving in the stuffing box to prevent solids stagnation and build-up. As with any pumping application, you should always avoid dry running conditions.

Additional Considerations

Choosing the proper seal for a slurry pump is just part of the equation. It’s also imperative to select the right pump for the job and to maintain it properly.

As with other pumping systems, poor equipment conditions caused by bad bearings, cavitation, excessive impeller loads, and misaligned shafts can lead to excessive vibration and shock to the mechanical seal. A slurry pump running under these conditions will generate more heat and more opportunity for abrasives to enter the sealing interface. MT

Lubricating Film Matters

According to Crane Engineering’s fluid-handling experts, regardless of your pumping application, a lubricating film at the sealing interface is always needed.

A film that is too thick will increase leakage and may allow particulate between the mechanical seal faces, increasing wear from abrasion. Conversely, a film that is too thin will generate heat and degrade materials. Keeping the sealing interface cool and clean will promote longer seal life.

Crane Engineering is a distributor of industrial-grade pumps, valves, filters, wastewater-treatment equipment, and other fluid-processing technology. Services include repair, corrosion-resistant coatings, and skid-system design and fabrication. For more information and instructional videos, visit craneengineering.net.

158

6:01 pm
May 15, 2017
Print Friendly

Use IR Switchgear Windows Properly

IR windows provide a measure of safety and reduce labor by allowing thermographers to inspect switchgear without opening panel covers. (Photo courtesy of Fluke Corp.)

IR windows provide a measure of safety and reduce labor by allowing thermographers to inspect switchgear without opening panel covers. (Photo courtesy of Fluke Corp.)

By Jim Seffrin, Director, Infraspection Institute

In an effort to reduce the risk of injuries associated with arc flash, many sites have installed infrared (IR) transmissive windows or ports that permit IR inspections of switchgear without the need to open panel covers. Although such devices can provide a measure of safety and help to reduce labor associated with those inspections, they pose unique challenges not associated with direct line-of-sight imaging.

Switchgear windows are typically constructed of a rigid frame with a fixed IR transparent material that enables an imager to view through them. Switchgear ports consist of a rigid frame with small openings through which an imager may be sighted. Depending upon type, some feature a single hole, others incorporate metal screens containing multiple holes.

randmIR windows will always attenuate infrared energy received by the imager. While this attenuation affects qualitative and quantitative data, the greatest challenge involves temperature measurement. Accurate temperature measurements can’t be obtained through a screened port. Furthermore, the ability to accurately measure temperatures through an IR window is possible only if the following conditions are met.

• The window opening must be larger than the imager’s lens objective.
• The target must be at or beyond the imager’s minimum focus distance.
• Values for window transmittance and target emittance must be known and properly entered into the imager’s computer.
• The imager’s lens must be kept perpendicular to and in contact with the window.

When it is not possible to meet all of the above conditions, imagery should be evaluated only for its qualitative value. As always, any inexplicable hot or cold exceptions should be investigated for cause and appropriate corrective action taken. MT

Words to the Wise: Beware Hidden Electrical Danger

Getting ready for an infrared inspection of electrical equipment often requires manual preparation of switchgear components, which could be a riskier endeavor than many people might think. Unwary thermographers and other personnel can, in fact, be injured through contact with cabinets or component surfaces that have become accidentally or unintentionally energized.

Switchgear enclosures and components are generally designed to prevent their surfaces from becoming energized. Under certain circumstances, however, enclosures and other dielectric surfaces can become unintentionally energized to significant voltage levels. This potentially lethal condition can be caused by improper wiring, faulty equipment, or contamination due to dirt or moisture.

When conducting infrared inspections on or near electrical equipment, always keep the following in mind:

• Only qualified persons should be allowed near energized equipment.
• Treat all devices and enclosures as though they are energized.
• Never touch enclosures or devices without proper PPE (personal protective equipment).
• Do not lean on or use electrical enclosures as work surfaces.
• Always follow appropriate safety rules.
• Know what to do in case of an accident.

Working alone near exposed, energized electrical equipment isn’t just dangerous, it’s a violation of federal law. Thermographers who perform infrared inspections on any electrical equipment should never work alone. Since CPR can’t be self-administered, at least two people trained in first aid and CPR must always be present when working near most exposed, energized equipment. Having a second CPR-trained person along not only satisfies OSHA requirements, it may save your life.

To paraphrase a time-honored electrician’s admonishment, remember that while there are old thermographers and bold thermographers, there are no old, bold ones.

Jim Seffrin, a practicing thermographer with more than 30 years of experience in the field, was appointed to the position of Director of Infraspection Institute (Burlington, NJ), in 2000. This article is based on several of his “Tip of the Week” posts on IRINFO.org. For more information on electrical systems, safety, and other infrared-related issues, as well as various upcoming training and certification opportunities, email jim@infraspection.com or visit infraspection.com.

55

5:48 pm
May 15, 2017
Print Friendly

Get Your Cybersecurity Off the Ground

Hacker HackerangriffImplementing cybersecurity defenses for industrial-control systems can seem intimidating. The right initial actions are crucial. Alexandre Peixoto, cybersecurity expert for the DeltaV distributed-control system from Emerson (Round Rock, TX, emerson.com), urges users to look closely at these seven key areas. They can offer a good defense-in-depth strategy in the short term:

• Workstation hardening: Ensure that the workstation configuration meets security policies.
• User-account management: Maintain unique user accounts and password-change routines.
• Patch/security management: Keep hardware and software up to date.
• Physical security/perimeter protection: Limit physical and electronic access to system networks.
• Security monitoring/risk assessment: Develop security policies and system-monitoring behavior.
• Data management: Develop guidelines for secure data creation, transmission, storage, and destruction.
• Network security: Ensure that system networks are properly segregated and protected.

For organizations wanting to get new cybersecurity programs off the ground fast, Peixoto recommends starting with the first three items on this list. Inexpensive to implement, they typically can be completed in-house.

—Jane Alexander, Managing Editor

randmWorkstation hardening

Workstations are usually the entry points to isolated networks. New installations run at peak security but, over time, changes intended for temporary use, such as a remote access or use of removable media, are not reversed. These changes increase the system’s attack surface, especially if the allowed remote connections aren’t monitored or periodically audited.

Cybersecurity isn’t a set-and-forget type of initiative. Operations should monitor and maintain all workstations using the initial configuration as a baseline. System administrators should keep records of their system’s security policies and develop policy guidelines surrounding what can and cannot be changed.

Dedicated applications are available to help audit essential files and services running on each control-system workstation. These applications can be valuable tools in assessing cyber-threats within an industrial control-system environment.

User-account management

Individual user accounts with appropriate permissions should be part of every organization’s security policy. Properly assigning user permissions also has a strong impact on cybersecurity. While it may seem easier to give every user high privilege access to the system, this approach increases the impact of a cyberattack, no matter which account is stolen. Developing and applying guidelines for user accounts is the first step, but setting a strategy for account management, based on those guidelines, is key to long-term control-system cybersecurity support.

Strict enforcement of password complexity and change routines will make it harder for unauthorized users to gain access using stolen passwords or brute-force attacks. A best practice is for each user to have a unique username and password for the control system that is distinct from those they use on enterprise business systems.

Patch/security management

Properly maintaining a control system means keeping hardware and software up to date. When a system is unpatched or outdated, the organization is exposed to cyberattacks.

Organizations need to keep track of operating system updates, antivirus updates, and software hotfixes that are available for their systems and regularly apply these patches. Unpatched systems are vulnerable to cyberattacks that are based on known vulnerabilities. Appropriate, timely patch management can be accomplished internally or by using support programs available from automation-system vendors.

Bottom line

Not only is it easy to overlook cybersecurity, it’s difficult for plants to justify allocating resources for it if they’ve never been attacked (or have been, but don’t know it). Unfortunately, when security vulnerabilities are exploited, the costs required to recover a system are high and the impact widespread.

Focusing on the right first steps today can help secure your industrial-control system and develop an internal cybersecurity posture in your organization. MT

For more information on cybersecurity, go to emerson.com/cybersecuritymanagement.

105

4:47 pm
May 15, 2017
Print Friendly

Beware Self-Inflicted Reliability Problems

modern manufacturing industry and mechanization concept, abstrac

Think of this expert advice as a reality check for your operations and take action accordingly.

By Jane Alexander, Managing Editor

The root cause of poor reliability can come from many sources, including aging plant assets, poor design decisions, even disregard for reliability by those who built and/or installed the equipment. Then, there are the many other reasons outside of your control that could be contributing to the reliability problems your site is experiencing today. While any reliability-improvement initiative will require that all of those issues be addressed, according to Jason Tranter of Mobius Institute (mobiusinstitute.com, Bainbridge Island, WA), operations must first deal with those of the “self-inflicted” variety.

Don’t think you have self-inflicted reliability problems? Tranter begs to differ. It’s a bitter pill to swallow, but yes, you do,” he said. “That’s good news, though, since it is much easier to deal with the self-inflicted root causes than the inherent reliability problems you adopted.”

What does Tranter mean by self-inflicted? To determine why equipment fails prematurely and/or why you experience slowdowns, safety incidences, or quality problems, he explained that personnel could go through a detailed reliability-centered maintenance (RCM) analysis process, or perform root-cause failure analysis (RCFA) after each failure occurs. “Better yet”, he said, “they can learn from the experience gained at thousands of plants around the world and consider some of the most common root causes of equipment failure.”

Focusing on rotating equipment, Tranter outlined those types of problems as follows, starting with the most obvious and working backward to their root causes.

#3. Cause of Reliability Problems: Imperfect operating and maintenance practices

Most of the equipment in a plant or facility, i.e. motors, pumps, fans, compressors, and turbines, is designed to run for many, many years without unplanned downtime. While those types of assets may incorporate some components that wear out, many items, such as bearings and gears, are designed to provide years of trouble-free operation. This, however, assumes that all of the parts were installed correctly, the components are precision aligned, the bearings and gears are correctly lubricated, all fasteners are tightened to the correct torque, there is no resonance, belts are tightened to the correct tension, and the rotors are precision balanced.

It also assumes that the equipment is operated as designed. Pumps, for example, should be operated at their best efficiency points (BEPs). “If you are unsure these types of situations are occurring,” Tranter cautioned, “then they almost certainly are.” He pointed to several areas where seemingly minor issues could be causing serious problems:

1705fvibration2

Just 5/60th of a degree of angular misalignment can cut bearing life in half. (Reference: Harris, Tedric A., A Rolling Bearing Analysis, John Wiley & Sons, New York, 1984.)

Shaft alignment. When two shafts are “collinear” (no angle or offset between their centerlines) it reduces stress on the bearings, couplings, shafts, and the rest of the machine components. Research has revealed that just 5/60th of a degree of angular misalignment can cut bearing life in half (see Fig. 1).

If you use laser alignment with appropriate tolerances, and you remove soft foot, then this will not be a source of poor reliability. By the way, just because your vibration analyst does not detect misalignment does not mean that your machines are precision aligned.

The life of a bearing is inversely proportional to the cube of the load.

The life of a bearing is inversely proportional to the cube of the load.

Balancing. When you balance to ISO 1940 grade G 1.0, the cyclical forces on the bearings, shaft, and structure are minimized and you gain reliability. If you do not have a balancing standard, then unbalance will be a root cause of failure. If you wait until the unbalance generates “high” vibration, then you will have reduced the life of the equipment and supporting structure. That’s because the life of a bearing is inversely proportional to the cube of the load (see Fig. 2). Tranter noted that, while this calculation sounds very complicated, it basically means that if you double the load, a bearing’s life will be reduced to an eighth (23).

Tiny 3-µm particles cause more damage than 40-µm and 10-µm particles (Reference: A Study by Dr. P. B. McPherson)

Tiny 3-µm particles cause more damage than 40-µm and 10-µm particles (Reference: A Study by Dr. P. B. McPherson)

Lubrication. When you correctly lubricate bearings and gears, whether with grease or oil, and that lubricant is free of contaminants, you will achieve maximum life. But if bearings are not adequately greased, their life will be reduced. If the oil is contaminated, the viscosity is incorrect, or additives are depleted, then the life of gears and bearings will be greatly reduced.

Research was performed to determine which particles caused the greatest damage. It wasn’t the 40-µm particles or the 10-µm particles, it was the tiny 3-µm particles (see Fig. 3).

By the time you can see water in oil, the life of the bearing has been halved.

By the time you can see water in oil, the life of the bearing has been halved.

According to Tranter, personnel may think that if they can’t see water in oil then the oil must be fine. Sadly, that is not correct (see Fig. 4). By the time water can be seen in the oil, the life of the bearing has been halved. “We could continue the discussion,” he said, “but suffice it to say that there is a great deal we can do to avoid problems that arise due to imperfect maintenance and operating practices.”

#2. Cause of Reliability Problems: Desire and organizational culture

It’s one thing to understand all of the above root causes. “It’s another,” Tranter observed, “to obtain approval to establish standards and purchase all of the tools, such as laser-alignment systems, that enable technicians and operators to do their jobs correctly. But owning the tools and having standard operating procedures won’t solve the problem.” As he put it, the problem will only be solved when technicians and operators want to use those tools properly and are given the time and encouragement to do so.

Thus, the issue of “desire” and its link to organizational culture must be considered as a root cause of self-inflicted reliability problems and addressed accordingly.

#1. Cause of Reliability Problems: Inadequate management support

Tranter believes a strong case could be made that the root cause of all failures derives from lack of senior-management support for a culture of reliability. Without their support it will be impossible to change the culture and thus change behavior.

“Think about initiatives to improve safety at your plant,” he said. “If senior management didn’t support them, would those initiatives have been successful? Senior-management support leads to people being employed in safety roles, investment in training and tools, and posting of signage that provides warning and feedback on progress, among other things. It also keeps sites from cutting corners that would risk safety, and it makes it clear how important safety is to the future of the organization.”

According to Tranter, the type of management support that drives safety at a site needs to be leveraged to drive reliability improvement. “Everyone within the organization,” he said, “needs to understand that reliability is critically important to the organization and that senior management will stand strong when shortcuts that compromise reliability are available.” Without adequate senior management support, he concluded, meaningful culture change won’t occur, and reliability-improvement initiatives won’t be able to eliminate self-inflicted root causes of problems. MT

Jason Tranter, BE (Hons), CMRP, VA-IV is CEO and founder of Mobius Institute (Balnarring, Victoria, Australia, and Bainbridge Island, WA). For more information on this topic and other reliability issues, including vibration monitoring and training and certification of vibration analysts, contact him at jason@mobiusinstitute.com, or visit mobiusinstitute.com.

Where Does Condition Monitoring Fit?

By Jason Tranter, Mobius Institute

Condition monitoring plays several crucial roles in the battle against self-inflicted reliability problems. For example, providing an early warning of impending problems minimizes the impact of premature failure, and detecting and eliminating the root causes ensures that we achieve the greatest life and value from our precious assets.

Many plant personnel, however, believe that if they have a condition-monitoring program in place, equipment reliability will be optimized. That, unfortunately, is not true.

Most detected faults are avoidable. While it is important to get an early warning, it is much more important to avoid the problem in the first place. Condition monitoring can help by detecting the root causes of failure, including misalignment, unbalance, lubrication issues, and looseness, among others. If those problems are cost-effectively nipped in the bud, then we avoid future failures.

Another way condition monitoring plays a role in plants is in acceptance testing. As part of the purchase agreement, condition-monitoring specialists can perform tests to ensure the new or overhauled equipment is “fit for purpose.”

You may be surprised at how many problems you actually bring into your plant.

18

4:15 pm
May 15, 2017
Print Friendly

Remote Monitoring Empowers Solar Contractor

Solar-power systems that take the sting out of energy costs are effectively monitored with a state-of-the-art tool and cloud-based data system.

1705fsolfocus01p

The NuEra Energy Designs company in Newport Beach, CA, specializes in designing, installing, and monitoring solar-powered systems. Remote monitoring is handled by the Fluke 3540 FC monitor and Fluke Connect cloud-based data-analysis system.

NuEra Energy Designs is a Newport Beach, CA-based contracting firm that works with industrial and commercial businesses to improve their energy efficiency and to find ways to save money, typically by designing and installing solar systems and associated electrical equipment.

NuEra’s work starts with load studies and extensive evaluation of building-power systems and equipment. If appropriate, solar solutions and backup and demand-control systems are designed and built based on those studies.

A key selling point of NuEra services to customers is a welcome,  often near-immediate return on investment as a result of reduced energy bills, depreciation, and the potential to obtain energy and tax credits. In some cases, installation of solar systems and electrical upgrades delivers net revenue to clients who are then able to put power back into the energy grid.

Contractor, problem solver

Ken Dodds, the company owner and chief energy analyst, has established himself over the years as an electronics and electricity problem solver. He became a California-licensed contractor in the 1970s. His early projects were delivering power to remote ranches and other installations in the Mojave Desert, where it can be cost prohibitive to run conventional electrical lines. He has designed and built portable and off-grid solar systems to operate well pumps, power ranch homes, and illuminate street lights on remote military bases, complete with battery or multi-generator backup systems.

Though he started NuEra in Arizona more than six years ago, Dodds does the bulk of his business in California where the high cost of power helps makes solar systems a legitimate option for commercial customers. Add in energy savings through lighting, HVAC, and other electrical upgrades and the cost savings become substantial.

“One manufacturing-facility customer went from paying what would be $23,000 per year at today’s rates for energy (their old rate was a bit less), to getting $90 in return from the utility less than two years later,” Dodds stated.

The Fluke 3540 FC monitor provides real-time data capture.

The Fluke 3540 FC monitor provides real-time data capture.

Monitoring and documenting

To efficiently document studies and identify such savings, Dodds uses the Fluke 3540 FC three-phase power monitor (Fluke Corp., Everett, WA, fluke.com) to track three-phase systems at his client’s plants. The monitor takes power analysis and logging to a new level by putting the data stream onto data servers. Dodds is then able to remotely read and analyze these power measurements, depending on the configuration:

• current (A)
• voltage (V)
• frequency (Hz)
• power (W)
• apparent power (VA)
• non-active power (var)
• power factor (PF)
• total harmonic distortion voltage (%)
• total harmonic distortion current (%)
• harmonic content current (A).

The information is streamed from the Fluke 3540 FC to secure cloud servers where the measurements can be analyzed with the Fluke Connect mobile app or Fluke Condition Monitoring desktop software. Graphs show trends and fluctuations during the monitoring period. Dodds sets up alarms to indicate when the power is outside certain thresholds.

Monitoring the data gives Dodds a signature of the building, from the main feeders and on into critical pieces of equipment. “First, it lets us know where best to attack the building to make changes, or see if we can fix something upfront,” he said. “We look at kilowatts, we monitor the voltage, we look at use times. We can tell if the loading is off on different legs of the three phase, important because if it’s not uniform, you’re going to have issues.”

NuEra's Ken Dodds uses the Fluke 3540 FC three-phase power monitor to track three-phase systems at his client’s plants. The monitor sends the data stream to cloud-based servers for analysis.

NuEra’s Ken Dodds uses the Fluke 3540 FC three-phase power monitor to track three-phase systems at his client’s plants. The monitor sends the data stream to cloud-based servers for analysis.

Easily shared, reliable data

The data is useful to a wide range of workers. “The power-monitoring system not only educates our electricians to a problem,” Dodds stated. “If I’m worried about a motor or another big expensive piece of equipment, I can see trend graphs on what’s happening with the machine on my tablet or phone.”

Dodds connected a Fluke 3540 FC at one manufacturing plant recently so he could watch, in real time, the power going into the building, as well as the power going back to the grid from the solar system. “This is really valuable to me, especially for knowing what happened to the power I sent back to the utility. That is what they are paying my customer for so it’s verifying that,” he explained. “If my data shows I’m sending 15 kilowatts and the utility only shows 5 kilowatts, I can question that and we can figure what’s going on.”

Recently, the system allowed him to identify energy waste. “I discovered the other day a compressor was kicking on in the middle of the night. I called the building supervisor to see if anyone was working at that time. He said no, so we knew having the compressor on was a waste of money. You are paying for air to go leak around the plant. So these are some of the types of savings we find.”

The 3540 also provides power-factor data, a measure of real and apparent power, which can be a reason for the demand charges being high. “The convenience of monitoring energy consumption from anywhere is huge,” Dodds said. “I can use it in the car, when I’m on a roof or in the office or at the coffee shop or at home, wherever. My phone goes whoop whoop, when an alarm goes off. I check and I know what an asset is doing. It only takes a second to look at and read it. From anywhere, you can answer a text or send an e-mail. It’s exciting to see it develop.” MT

For more about the Fluke 3540 FC monitor, supporting software, and cloud-based data handling, visit fluke.com.

206

3:56 pm
May 15, 2017
Print Friendly

Training, Automation Drive Extrusion Reliability

(All photos courtesy of Aquatherm.) When designing the new extrusion plant, the team needed a solution to how best deliver the cooling water for the extrusion process. After some creative design work, it was decided to create a 300-ft.-long tunnel under the facility, specifically for this purpose.

When designing the new extrusion plant, the team needed a solution to how best deliver the cooling water for the extrusion process. After some creative design work, it was decided to create a 300-ft.-long tunnel under the facility, specifically for this purpose. All photos courtesy of Aquatherm.

German-based Aquatherm provides reliable, sustainable pipe production as a result of advanced technology, automation, and in-house design and innovation.

By Michelle Segrest, Contributing Editor

As one of the first three companies in the European market to manufacture under-floor heating systems, German-based Aquatherm, headquartered in Attendorn, has come a long way since the company was founded 44 years ago. It now leverages state-of-the-art automation and innovative energy-saving systems to drive its reliability and sustainability programs.

“Until a few years ago, maintenance employees needed to localize and correct a fault indication directly at a machine if a system error occurred,” explained Aquatherm’s Maik Rosenberg, the company’s global co-managing director. “Power converters and frequency converters could only be parameterized manually or adjusted by potentiometers. Now, we can access the central control from various places within the company. If needed, we can access every single drive of an extrusion line.”

Maintenance staff members can correct faults using smartphones and also receive repair orders directly from a tablet. They use the handheld technology to recall all the information needed for order fulfillment in a central folder, and then take advantage of the ability to choose required materials from its digitized stock inventory.

“It is possible to operate all our machines online through our production-activity control system,” Rosenberg said. “The system enables us to monitor the energy consumption of all the machines and their components.”

The use of automation has enabled Aquatherm to establish itself as one of the world’s leading manufacturers of plastic piping systems for heating, cooling, domestic water, industrial, and sanitary applications. The company was founded in 1973 by Gerhard Rosenberg for the development, production, and installation of warm-water, under-floor heating.

In 1980, the company developed the plastic pipe system Fusiotherm, which is made of polypropylene-random (PP-R) for sanitary equipment and heating installations. This innovation has been the foundation of Aquatherm’s continuous growth. The company has developed into a global business that is represented in 75 countries and is a market leader in many sectors and application fields.

Aquatherm employs almost 600 employees within the group of companies. In 2016, it manufactured more than 40,000 km of pipe and 50-million molded/fabricated components out of 18,000 ton of raw materials.

In April 2017, Aquatherm opened a state-of-the-art 160,000-sq.-ft. facility in Attendorn that features 19 extrusion lines. The building has been designed and constructed to offer space for a total of 32 production lines, underscoring the company’s commitment to future growth.

Aquatherm North America (Aquatherm NA) was established roughly 10 years ago as a sales, marketing, and support partner and operated independently until late 2015 when Aquatherm Worldwide assumed control of the North American companies Aquatherm LP (U.S.) and Aquatherm Corp. (Canada). North American operations are based in Lindon, UT, and feature a new 82,000-sq.-ft. facility that opened in April 2017. All corporate departments are housed in this facility, along with a cutting-edge Design and Fabrication Services department and quality-assurance laboratory.

This is a portion of the process-cooling system for Aquatherm’s new extrusion lines. Aquatherm pumps more than 121-million gal. each year from the Bigge River at temperatures from 50 F to 57 F. By German law, the water returned to the river can be no more than 73.4 F. The firm has three water loops running through heat exchangers—process cooling, electric-motor cooling (the largest motor is 800 kW), and heat recovery for space heating and domestic hot water.

This is a portion of the process-cooling system for Aquatherm’s new extrusion lines. Aquatherm pumps more than 121-million gal. each year from the Bigge River at temperatures from 50 F to 57 F. By German law, the water returned to the river can be no more than 73.4 F. The firm has three water loops running through heat exchangers—process cooling, electric-motor cooling (the largest motor is 800 kW), and heat recovery for space heating and domestic hot water.

Maintenance best practices

Aquatherm’s maintenance team includes 40 specialized workers—metal workers, electricians, and machine fitters. Most are maintenance foremen and technicians. Consistent and regular training is the key to keeping the team up to date with the latest technologies.

“Our maintenance workers are trained regularly, both in-house and externally,” Rosenberg said. “We empower them to perform their tasks as efficiently and quickly as possible.

The operations and maintenance teams work closely together. Short distances between the different departments make it easy to react quickly to challenges and encourage cooperation and information exchange between team members. Aquatherm is committed to keeping most of the maintenance of its equipment in house. “It is part of our company culture to do as much of our maintenance in house as possible with our highly qualified staff,” Rosenberg said. “We have a staff design team, which uses CAD to design our extrusion and injection-moulding tools. The tools are then manufactured in our tool shop. For us there is great value in using our own experienced staff to design special tools. This allows us to be highly flexible. We can react to new requirements quickly and appropriately while ensuring we preserve our high standards.”

Automation and advanced technology continues to play a key role.

“One good example of how our maintenance team made a difference for our production department and helped us to save costs is the installation of an additional measuring device at the beginning of our extrusion lines,” Rosenberg explained. “The device measures the pipe diameter and compares the pipe’s actual value with standard values. Previously, we only had a measuring device at the end of the production lines. With the new device installed at the beginning of the line, we can react immediately to variations and adjust the machine settings, as necessary. This is a simple but smart solution that has helped us reduce machine setup times and increase product quality.”

Aquatherm’s new extrusion lines operate three shifts a day, and ran for more than 340 days in 2016. Aquatherm engineers designed everything in the plant itself, including the control systems. The firm designs, builds, and automates their production lines, rather than purchasing complete lines, which may not be optimized for their product lines. Because they had to maintain production, it took 10 months to move the lines from the old building into the new building.

Aquatherm’s new extrusion lines operate three shifts a day, and ran for more than 340 days in 2016. Aquatherm engineers designed everything in the plant itself, including the control systems. The firm designs, builds, and automates their production lines, rather than purchasing complete lines, which may not be optimized for their product lines. Because they had to maintain production, it took 10 months to move the lines from the old building into the new building.

Building for growth

Planning and development of the new extrusion production facility was done in-house with a team of experts. From the initial planning phase, all participating departments were involved—extrusion, building-technology, electrical, metal-working, and technical-purchasing departments, as well as plant and company management.

“The idea behind staffing it was to have a cross-functional team combining the experience of all departments and to implement missed opportunities of the past in the new building,” Rosenberg said. “The ideal pipe production was planned using all the technical and organizational input of the entire team.”

All 19 extrusion lines now are located on the ground floor of the building. The material supplies, as well as auxiliary and packaging materials, are provided on the upper floor. The material supply is almost fully automated, Rosenberg said. The raw materials are transported directly from the supply silos, which are located outside the building, using seven coupled stations that move the materials through the ducts to the machines.

“All cooling, power, water, and compressed air is supplied directly to the machines through a central supply channel integrated in the floor,” Rosenberg explained. “This allows the respective areas to be clearly separated in a structured way, enabling the focus to be on respective core competencies of the involved teams. All process and building controls (material supply, cooling systems, fresh air, light, and safety engineering) were programmed and managed in house.”

The new 160,000-sq.-ft. Aquatherm manufacturing facility features 19 extrusion lines, has space for a total of 32 lines, and is all concrete to comply with German fire codes that deal with plastics fabrication. In 2016, the company manufactured more than 40,000 km of pipe and 50-million molded/fabricated components out of 18,000 ton of raw materials.

The new 160,000-sq.-ft. Aquatherm manufacturing facility features 19 extrusion lines, has space for a total of 32 lines, and is all concrete to comply with German fire codes that deal with plastics fabrication. In 2016, the company manufactured more than 40,000 km of pipe and 50-million molded/fabricated components out of 18,000 ton of raw materials.

Sustainability

Sustainability has been a core value of the company from the time it was founded more than four decades ago, according to Barry Campbell, vice-president of marketing, Aquatherm North America.

“We believe sustainability is a vital component in a company’s success,” Campbell explained. “That is why we have certified our energy-management system according to DIN EN ISO 50001 and our environmental-management system according to DIN EN ISO 14001. It is also why we are the only piping system in North America that can contribute directly to LEED v4 points. We consistently are working to reduce our consumption of energy, water, and resources, as well as lower the amount of our waste and emissions. For example, in 2015, we saved more than 42 tons of carbon dioxide. We also reduced the consumption of raw materials by more than 288 tons by reusing plastic materials in our production processes.”

Energy savings play into the company’s sustainability picture. “We use the hot water, hot air, and waste heat generated during production processes to heat our state-of-the-art extrusion building, as well as another building,” Rosenberg said. “The total heated area is approximately 15,500 square meters. The system that we have in place is so efficient, we only need additional heating for approximately 10 days a year when production is down during the Christmas holidays.”

The company also started a program to replace the lamps in all of its production and warehouse buildings with LEDs.  “To save energy, we also have installed movement-sensitive lighting in the technical basement of our new extrusion building,” Rosenberg added.

Automation triggers continuous improvement

With constant changes in technology, automation continues to be a crucial element in every one of Aquatherm’s processes.

“Automation gains more and more importance, especially with regard to quality control,” Rosenberg said. “One example is the in-line measurement of pipe-wall thickness. Monitoring data is sent to our control center and displayed as graphics on computer monitors. In the event of an error, a message is sent to the shift supervisor and an alarm warns the lead operator. This allows us to constantly minimize reaction time, helping us to guarantee product quality.”

Additionally, Aquatherm controls many physical parameters—including temperature, speed, and melting behavior—in real time.

“Soon, we will be equipping our maintenance teams with tablets, which will enable them to perform remote maintenance from home on weekends when they are on call,” continued Rosenberg.

To help ensure continuous improvement, the company enhances its automation and technology with old-school methods that still contribute to overall productivity. “We hold meetings at the end of each shift,” Rosenberg said. “In these meetings, we review the shift, analyze what went well, and discuss any issues that need to be addressed. All information is summarized and written in a hand-over report. All of our manufacturing plants communicate regularly and share best practices and, in the end, it’s a combination of all these things that make us a productive and sustainable company.” MT

Michelle Segrest is president of Navigate Content Inc., and has been a professional journalist for 28 years. She specializes in developing content for the industrial processing industries and has toured manufacturing facilities in 41 cities in six countries on three continents. If your facility has a good operational, reliability, and/or maintenance story to tell, please contact her at michelle@navigatecontent.com.

23

2:29 pm
May 15, 2017
Print Friendly

Final Thought: Back to Basics For a Better Future

klausblacheBy Dr. Klaus M. Blache, Univ. of Tennessee, Reliability & Maintainability Center

During a trip to Europe, several years ago, I visited the German Museum of Science and Technology in Munich (the largest museum of this type in the world). While there, I marveled, as many do, at the machinery and equipment that people have designed and built without the help of modern technology. Consider the many windmills that used to be so prevalent across the European landscape

According to Low-Tech Magazine (Barcelona, lowtechmagazine.com), at their peak, the total number of wind-powered mills in Europe was 200,000. The Netherlands alone is reported to have had 9,000 of them by 1850. Based on a capacity of about 50-hp each, that calculates out as roughly 450,000 hp to mill grain, pump water, and support other industrial uses.

The craftsmen of those early, engineered wonders were driven to do great work, mostly because their livelihoods depended on it. Today is not that different. For example, as stated in a Feb. 2015 Los Angeles Times article, The Boston Consulting Group (Boston, bcg.com) predicted that investment in industrial robots would grow 10% a year in the world’s 25-biggest export nations through 2025, up from what, at the time, was said to be 2% to 3% annual growth.

Those numbers reflect just one of many such projections that popular news outlets seem to continuously share. Regardless of automation’s actual rate of growth in industry, for purposes of reliability and maintenance (R&M), the reality is that our skilled trades need more technical knowledge to understand wireless controls, computer interfaces, machine learning with predictive technologies, big data, and digital connectivity.

A lot can be accomplished right now. It starts with getting better at doing the basics well with proven best practices. Much of this falls into the category of precision maintenance.

My 2016 study comparing the savings resulting from precision-maintenance training with those from general-maintenance training showed that the benefits of applied precision maintenance were greater by a factor of four. Precision-maintenance training teaches trades and plant-floor engineers essential manufacturing skills. Examples of such skills include asset care and operation and machine assembly and installation, plus hands-on knowledge of precision alignment, pumps and pumping systems, gearboxes, and root-cause failure analysis.

Maintenance best practices will continue to be key to manufacturing competitiveness.

Maintenance best practices will continue to be key to manufacturing competitiveness.

The payback

You recognize a skilled craftsman when you see one at work. It’s evident in how he or she takes care of every detail, checks and rechecks the work, and shows pride in doing something right the first time, every time. Sadly, for reasons such as time pressure, lack of training, and organizational culture, among others, there’s been a decline in craftsmanship over the years. I am, though, of the opinion that most personnel, if given the opportunity and an enabled work environment, want to do the best job possible. At the same time, the generally accepted number for human error in maintenance issues is greater than 50%. A thorough comprehension and application of precision maintenance can reduce that percentage.

Of course, we first have to find adequate numbers of qualified technical workers. That’s a challenge. According to the Georgetown Univ. Center on Education and the Workforce (Washington, cew.georgtown.edu), by 2020, the United States will be short 5-million workers with the necessary technical certificates and credentials to succeed in high-growth, high-demand industries.

In 1991, the National Research Council (NRC, Washington, nationalacademies.org/nrc/) investigated U.S. manufacturing competitiveness. The subsequent report stated, “…the most cost-effective increase in U.S. manufacturing capacity may well be achievable through improved maintenance practices for existing equipment.”

Fast-forward 26 years: I believe this NRC statement holds true in 2017, and will continue to hold true in industries of the future. MT

Based in Knoxville, Klaus M. Blache is director of the Reliability & Maintainability Center at the Univ. of Tennessee, and a research professor in the College of Engineering. Contact him at kblache@utk.edu.

Navigation