Archive | Condition Monitoring

57

7:50 pm
April 14, 2017
Print Friendly

Engine OEM Identifies New Business Service

160720catlogoDisruption is an overused word in technology, but Joe Barkai’s tagline to his book about IIoT says it all: How the Industrial Internet of Things is Changing Every Business. For Mak, a supplier of engines to the maritime industry, that means changing their business model to focus and recognize that servicing their large engines remotely isn’t some wild science fiction fantasy. It’s a reality for OEMs as end users move toward IIoT strategies.

The maritime engine supplier is partnering with Caterpillar Marine Asset Intelligence (www.cat.com) and will create a condition monitoring approach for the first project. This project includes an M46 DF dual-fuel engine and will provide real-time monitoring on the ship.

“This effort enables operations and maintenance leaders to make better decisions using data and analytics, helping to drive reduced cost, downtime and risk,” says Ken Krooner, Technology & Operations Manager for Caterpillar Marine Asset Intelligence.

According to Caterpillar Marine, “the onboard analytics and user interface provide the onboard crew with real-time information, such as the condition of their equipment and what they should do about any potential issues.”

More importantly, the analytics software allows for multi-level reporting.

“At the highest level, there are high-level dashboards and reports which can provide a variety of graphs and data visualizations, including vessel performance curves, efficiency comparisons, custom metrics, geophysical location, says Leslie Bell-Friedel, global business mgr. at Caterpillar Marine Asset Intelligence in an interview for a company publication. At a detailed engineering level, there are simple red-yellow-green indicators for each piece of equipment that summarize the current and projected condition, as well as the ability to drill deep to understand the health and performance of a piece of equipment.”

Also, qualified data can be seen ashore, where additional automated analytics are used to analyze the data — both from an individual vessel as well as from a fleet perspective — and where experts are on hand to review the analytic output and apply their experience to it. Access to the analytics can be done via any web-based device, either onshore or remotely. At this point, there’s no app available.

Click here to read the Bell-Friedel’s interview >>

1601Iot_logoFor more IIoT coverage in maintenance and operations, click here! 

73

7:11 pm
April 13, 2017
Print Friendly

Pump OEMs Address Oil and Gas Trends

Pump suppliers discuss trends and challenges in the oil and gas industry involving smart technology, competitive delivery, and optimized equipment efficiency.

As the use of vapor-recovery units (VRU) at oilfield storage-tank facilities grows, so does the need to understand that proper skid-assembly installation will help guarantee their reliable performance.

As the use of vapor-recovery units (VRU) at oilfield storage-tank facilities grows, so does the need to understand that proper skid-assembly installation will help guarantee their reliable performance.

By Michelle Segrest, Contributing Editor

Speed, portability, and reliability are key factors in optimizing production times and the bottom line in the oil and gas industry, according to experts from major pumping technology companies.

Glenn Webb, senior product specialist for Blackmer, Grand Rapids, MI, a leading brand from PSG, (Oakbrook Terrace, IL) said that the most obvious positive manifestation of the ongoing oil and natural gas production boom in the United States can be seen on street corners across the nation. At the end of January 2014, the average price at the pump nationwide for a gallon of gasoline was $3.28. One year later, the price for a gallon of gas had plummeted to $2.04.

Increased production in such prominent shale fields as the Bakken in North Dakota, Eagle Ford in Texas, Niobrara in Colorado, and Marcellus and Utica in New York, Ohio, West Virginia and Pennsylvania, has increased the demand for gathering, transport, and terminal systems that can store raw crude oil and natural gas until it can be shipped by truck, train, or pipeline for refinement and consumption With these increased challenges come innovative solutions.

Smart instrumentation

Some companies offer valve and pump products with smart instrumentation to monitor factors such as motor vibration, pump vibration, inlet pressure, outlet or discharge pressure, pipeline temperature, gear-box oil temperature, voltage, amp draw, supply pressure to valve controllers, actuator blow by, and smart-wear monitoring of internal wear components, according to Todd Loudin, president of North American Operations and VP Global Sales for Flowrox Inc., Linthicum, MD.

Loudin said Flowrox has experienced three major challenges for the oil and gas industry:

The price of crude. Many oil producers, especially within shale regions, require a minimum of $30/barrel. But only about 50% of the wells in the Bakken or Permian Basin break even at $30/barrel. The other 50% break even at around $60/barrel. There are some wells that have difficulty breaking even at as high as $100.

Capital investment has been slashed by the industry. Of course, investments will occur that are imperative to continued production, but budgets have been constrained, Loudin said.

A significant reduction in work force. One solution that the oil industry has embraced, according to Loudin, is intelligent instrumentation and monitoring for the production and refining process. “Some of these systems are not ideal and useable to the people doing maintenance or rebuild work,” Loudin stated. “The main variables are typically displayed on a distributed-control system (DCS) with an operator who can provide information on pressure, temperature, flow, and other variables. However, the person in the field does not have easy access to this information. One way we are helping companies in all industries is through our Malibu Smartware. This system creates a 3D visual of the process and process equipment. Key operational information on a given asset can be viewed by an operator or maintenance person on their smart phone, tablet, or PC, wherever they are. They can be standing right in front of the asset and see operating parameters, maintenance videos, drawings, past work history on the asset and even can get confirmation about spare parts in stock for repair.”

This software captures data regardless of where it is stored in the facility or offshore rig and provides it at the device level with only one username and password. To further expand on the use of smart software, it can allow condition monitoring of all kinds of assets, Loudin added. Through predictive analytics, the system learns what a normal condition looks like. When anomalies occur, warnings are sent to maintenance personnel.

These solutions can be cloud based or housed on the owner’s servers or their own secure cloud. The system uses the same encryption as the Internet banking industry.  

Quality manufacturing

Mark Weidmann, vice president sales-Midstream/Downstream O&G at PumpWorks610, a DXPE Company (Houston) said that customers ask him everyday, “Do our pumps, products, and services address cost, quality, efficiency, and reliability issues?” He said the simple answer is “yes,” however, this doesn’t happen in a vacuum.

Weidmann explained that his company is experiencing seven key trends:

Speed of delivery. “The longer you wait for your pump supplier to get back to you with what you requested, the more money you lose,

“Investment in manufacturing efficiencies and getting pump selection information into the hands of customers is vital. The issue that we now face is that demand has outstripped supply. This is especially true in the case of centrifugal pumps engineered for specific applications and specifications.” 

Mergers and acquisitions. “We all see the acquisitions happening in the industry now,” he said. “The big companies get bigger and the lead times for projects are getting smaller and tighter. DXP Rotating Equipment Divisions’ ability to remain nimble and supremely focused on the engineering, manufacturing, testing, and delivery of these highly specialized centrifugal pumps remains key to our core values.”

Price. Material selection has become critical, Weidmann stated. “For example, carbon steel can save money over ductile iron,” he said. “But it’s not just about the quality of the metallurgy, it’s also about intangibles.” Companies who offer in-house engineering and testing, and extended warranties, are getting a competitive edge.

Supply and demand imbalances seem to be tightening. Most outlooks call for supply and demand equilibrium by early 2017.

Moderate demand. Global and U.S. oil demand continues to show moderate but steady growth.

LNG export. More U.S. LNG export capacity is expected to hit the market.

Cost control. Oil companies have learned how to operate in a lower-price environment, returning to a healthier focus on capital and operating cost discipline.

Weidmann said his company tackles these challenges with vertical integration of its manufacturing processes.

Vapor-recovery units

The increase in oilfield activity has also meant a corresponding increase in the amount of vapors that are created and emitted during production, transportation, and storage, according to Webb. To prevent the escape and loss of these vapors—which are saleable assets in addition to being potentially dangerous to the environment—many operators installing vapor-recovery units (VRUs) at their oilfield storage sites.

“The growth in the amount of vapors that are a by-product of oilfield production activities is not going away,” Webb said. “Neither is the attention that regulatory agencies will be paying to the levels of vapors that are emitted into the atmosphere and whether or not they can be harmful. That’s because many oilfield vapors have been classified as hazardous air pollutants or volatile organic compounds by the U.S. Environmental Protection Agency.”

Basically defined, a VRU is a system composed of a scrubber, compressor, driver, and controls designed to recover vapors that are formed inside completely sealed crude-oil or condensate storage tanks. During the VRU’s operation, the controls detect pressure variations inside the tank and turn the compressor on and off as the interior pressure exceeds or falls below pre-determined settings. When the compressor is running, it passes the vapors through the scrubber, where any liquid is trapped and returned to the tank, while the vapor is recovered and compressed into natural-gas lines.

As the oil and gas industry faces changing demand, low per-barrel prices, large supplies with varying extraction costs, and competition from renewable resources, producers are turning to manufacturers of pumps and related control equipment for increased reliability, efficient performance, and solutions for product handling and storage. Pump manufacturers are delivering, resulting in higher efficiency throughout the oil-and-gas handling process. RP

Michelle Segrest is president of Navigate Content Inc. She specializes in coverage of the industrial processing industries. Please contact her at michelle@navigatecontent.com.

199

4:15 pm
April 13, 2017
Print Friendly

Reliability Changes Lives

Using skilled technicians and advanced technology, Eli Lilly and Company creates life-saving medicines and devices worldwide.

By Michelle Segrest, Contributing Editor

Throughout the halls of the Indianapolis Eli Lilly and Company facility, the corporation's brand is proudly displayed. All photos courtesy of Eli Lilly and Company.

Throughout the halls of the Indianapolis Eli Lilly and Company facility, the corporation’s brand is proudly displayed. All photos courtesy of Eli Lilly and Company.

At Eli Lilly, the motivation to improve production reliability is not just something that is tracked on graphs and charts for upper management to review. In fact, for maintenance and reliability engineer Carrie Krodel, it’s personal.

Krodel, who is responsible for maintenance strategies at the Eli Lilly Indianapolis facility’s division that handles Parenteral Device Assembly and Packaging (PDAP), has a family member who uses the company’s insulin. “I come to work every day to save his life,” she said. “Each and every one of us plays a part with reliability. Whether it’s the mechanics or the operators keeping the line running, the material movers supplying the lines with the products, or the people making the crucial quality checks, everyone is a part of it. And we all know that the work we are doing is changing lives.”

The Indianapolis site covers millions of square feet with nearly 600,000 assets that must be maintained. According to Rendela Wenzel, Eli Lilly’s global plant engineering, maintenance, and reliability champion, the company produces the medicine as well as the packaging for insulin pens, cancer treatments, and many other products and devices.

For the entire Eli Lilly team—which includes a group of about 80 engineers at the Indianapolis site—the responsibility is crucial. “If we mess up, someone gets hurt,” Wenzel said. “This is a big responsibility.”

However, it’s the human element of this responsibility that inspires an exceptional level of quality.

Team, tools, training

Screen Shot 2017-04-13 at 11.03.07 AMWayne Overbey, P.E., is the manager of the Maintenance-Manufacturing Engineering Services department. He said his team of seven maintenance technicians uses three primary technologies every day to keep the machines running—vibration analysis, oil analysis, and infrared technology. With a focus on condition-based monitoring, each team member has an area of responsibility to collect and analyze vibration data. In addition to the vibration data collector, each team member carries a small infrared camera to make heat-signature images used to diagnose and troubleshoot rotating-equipment problems.

The team also uses a digital microscope that can zoom to 3500X magnification. This helps them look closely at a bearing race, cage, and rolling elements and see what caused a failure, whether structural, corrosion-based, or failed lubrication. In addition, the group has an oil laboratory that can analyze oil and grease. 

The team performs more than 7,000 measurements on more than 4,000 rotating/reciprocating machines and performs vibration analysis on those machines monthly, Wenzel stated. The level of qualified individuals is high. “Anything that is process related, we have the equipment to look at it and analyze it,” she said. “We have people with ISO 18436-2 Cat 2 and Cat 3 verifications and even one expert with an ISO18436-2 Cat 4 certification, and there are fewer than 100 people globally with that level of certification. These guys are experienced, high-level certified professionals.”

The maintenance team increased its level of performance more than five years ago when it made the strategic decision to outsource the facilities (buildings and grounds) portion of maintenance. With about 220 maintenance professionals companywide at the Indianapolis facility, this allowed the team to focus more on production and analysis rather than the facilities, Overbey said.

The team has sophisticated data-collection routes set up as PMs and also focuses heavily on maintenance training.

“We have a difficult time finding people interested in maintenance,” Overbey said. “We have a strategic program to train people that takes 18 months to 2 years. When I was growing up, being an electrician or mechanic was a fine career, but now the attitude is that you have to have a college degree to be successful. Most of our crafts people here make more than the average liberal-arts major. As we cycle out the baby boomer work force, we need to find new talent and close the gap.”

Wenzel agreed that finding qualified crafts people has been a focus that has helped Eli Lilly in its drive for reliability.

“Wayne saw the need and developed an excellent program,” she said. “Management is supportive. He is training them and then sending them to get experience while they are going to school.”

The program is responsible for hiring 24 trainees, to date, and has been able to place 18 of them in full-time positions within Lilly maintenance groups. The remaining six trainees are still in the initial stage of the program. The training also uses basic maintenance programs provided by Motion Industries and Armstrong. Last year, there were more than 30 well-attended training classes focused on equipment used at Lilly. The company wants the training to be relevant to what the maintenance technicians perform on a daily basis.

“The whole condition-based platform makes us unique,” Wenzel said. “We have all the failure-analysis competencies. It’s a one-stop shop. We provide two-to-three day courses on condition-based technologies for crafts and engineers. The whole understanding, as far as what maintenance and reliability can do, is to increase wrench time and uptime. We are all seeing an uptake in technology.”

The Indianapolis Eli Lilly facility has more than 600,000 assets that must be maintained by its experienced engineering-services team.

The Indianapolis Eli Lilly facility has more than 600,000 assets that must be maintained by its experienced engineering-services team.

Best practices

Overbey stated that his main responsibility is to help the various site-maintenance groups improve uptime by using diagnostic tools to identify root causes of lingering problems. With a focus on training paying dividends, he said the high-quality people are what make the condition-based monitoring team successful.

The team works with the site-maintenance groups to reduce unexpected failures, so increased time can be focused on preventive maintenance. “We look at our asset-replacement value as a function of our total maintenance scheme,” Wenzel said. “We look at recapitalization and make sure we are reinvesting in our facility. We keep track of where we are with proactive maintenance. Those numbers are tracked facility to facility and then rolled into a global metric.”

Vibration analysis and using infrared technology has become a central part of the department’s reliability efforts.

“These guys have taken responsibility for the failure-analysis lab and taken it on as an added-value service,” Wenzel said. “For example, if there is a failed bearing, they take it out, cut it up, and provide a report that goes back to management. If we make a call that a piece of equipment has increased vibration levels and is on the path to failure, based on the vibration data collected, getting those bearings goes a long way in getting site buy-in when the actual bearing problem can be visually observed. Most individuals are skeptical when shown the vibration waveform (squiggly lines), seeing the bearing with the anomaly is the true test of obtaining their buy in.”

“We can compete with anyone in terms of oil analysis,” Wenzel added. “We can identify particles and have switched to synthetics. For example, when oil gets dirty, it becomes acidic. Something slightly acidic can be more harmful than something that is highly acidic because it will just continue to eat away at the material and cause significant damage before you can stop it. Something slightly acidic can really tear up bearings. The FluidScan 1100 can detect that.”

Screen Shot 2017-04-13 at 11.03.19 AM

More than 80% of the oil samples are now handled internally, Wenzel said. “As we are selling all of these capabilities to the PdM team around the world, we are starting to look at some of the potential issues at other facilities to provide extra analysis with this condition-based maintenance group,” she said. “We are sharing good ideas and processes across facilities. We now have a maintenance and reliability community.”

Eli Lilly employs Good Manufacturing Practices (GMP) and the use of many chemicals requires a high level of cleanliness that is checked daily and regulated by government bodies.

Changeovers can often take weeks. “We check everything,” Wenzel said. “There is very involved and stringent criteria for how we clean a building. Regulations are a challenge, but they keep you on your toes. You don’t even notice it anymore because it becomes a part of what you do. It doesn’t faze the day-to-day thinking.”

The precision and accuracy of the facility's manufacturing equipment contributes to its product excellence.

The precision and accuracy of the facility’s manufacturing equipment contributes to its product excellence.

Operational excellence

Eli Lilly works with cross-functional teams in which maintenance, engineering, and operations are working on the overall process. Operations manager Jason Miller is responsible for running the process. Maintenance corrects the issues and performs preventive maintenance to get ahead of equipment failures and prevent unplanned downtime.

“Anytime we have an equipment failure we evaluate what happened and see what process we can put in place to get ahead of those things,” Miller said. “Line mechanics are on each shift and work with our line operators to understand and troubleshoot issues. We get ahead of issues to ensure [there is] no impact to the quality of our process.

With advanced robotics and a large amount of automation, monitoring performance and quality is key to successful operation and production, Miller stated. “Everything is captured, including downtime and rejects,” he explained. “We identify corrective actions at every morning meeting. We use the data on the line to drive improvement. The line is automated, but if there is a reject every 100 cycles, we need to take action. The robotics never stop. If you see overloads or rejects over time, this tells you about mechanical wear and other issues with the equipment. We drive data-driven decisions for maintenance.”

The preventive maintenance includes lubricating linear slides each month. When vibration is detected, adjustments are made immediately. “The machines tell us what’s going on. We just have to know how to read them,” Miller said. “We have manual and visual quality checks, but the machines also do quality checks. Reliability is critical because when patients are waiting on their medicine, the machines have to run the way they are supposed to run all the time. We have standards, and they have to be precise. This is medicine going into someone’s body. We are the last step of the process. It has to be packaged and labeled correctly, as well.”

Mike Campbell is the maintenance planner and scheduler for PDAP and has developed a system in which all preventive maintenance is performed during scheduled shutdowns.

“We develop a schedule with every piece of equipment and every scheduled PM associated with it,” Campbell said. “One line may have 50 to 60 PM work orders to perform during the week of the scheduled line shutdown. We bring in a lot of resources to do it all at once, typically requiring a day shift and a night shift.”

Advanced production technology is critical to the standard of reliability excellence.

Advanced production technology is critical to the standard of reliability excellence.

Changing lives with reliability

Wenzel said that looking at how each department interacts helps to put all the pieces of the reliability puzzle together. They have even received outside recognition of their practices in Indianapolis. In 2008, The Corporate Lubrication Technical Committee, of which Wenzel is the chair, won the ICML John Battle Award for machinery lubrication.

“It’s not only a cost piece, there is a whole asset-management piece and a whole people piece that we have to look at–not just the numbers, the metrics, the bars and charts–it’s the whole thing that makes a facility tick,” she explained. “Reliability isn’t just my job…it is everyone’s job. Every time I get into my car and turn the key, I expect it to come on. Every time I run that piece of equipment, I want it to perform the same way every time. That, to me, is reliability.”

Overbey said reliability is about being tried and true. “It’s predictable. It’s reliable every day. It’s the whole conglomeration of things that is very complicated, yet very simple. When all is said and done, reliability is a huge advantage for a company. You are only spending money when you need to. But it’s very difficult to get there.”

Wenzel said that consistency is a key to reaching reliability goals. Eli Lilly has global quality standards and good manufacturing practices that are applicable to each of the company’s sites across the world.

“Reliability means the equipment is ready each and every time it runs, and it should perform the same way each time,” Krodel said.

Doug Elam is Level 4 vibration certified, which is a rare level of qualification. He works on Overbey’s team and also tried to define reliability. “Reliability is an all-expansive subject that touches on different types of technology, the goal of which is to improve efficiency in machinery performance,” Elam said. “It requires an intense study of the background functions of the machines.”

Eli Lilly and Company uses robots on an assembly line to carefully package its products.

Eli Lilly and Company uses robots on an assembly line to carefully package its products.

Regardless of the definition, reliability for Eli Lilly always circles back to the human element.

“Patients come through and perhaps are on insulin or a certain pill, or a cancer treatment that has changed their lives,” Wenzel explained. “We listen to them, because it’s not just the medicine that matters, but the packaging and ease of use. It puts what we do in perspective. We take this feedback and incorporate it into our designs. It starts with an end user’s idea and need, goes to design, goes through production, then back to the end user. It’s like a circle of life.”

The research is carefully conducted with the end user always in mind.

“A lot of research is done to make the best fit for each subset of people,” Wenzel continued. “And at the end of the day you have a marketable product that you can be proud of. Being on both sides of the business, you understand why medicine is so costly. But when you find the one niche that helps cancer patients, or the kid who is near death, and then you can be a part of developing this medicine that completely changes his life, it just makes it all worthwhile.”

And yes, it’s personal.

“When you know people who use the products,” Wenzel said, “the work you do becomes a part of you.” MT

Michelle Segrest has been a professional journalist for 27 years. She specializes in the industrial processing industries and has toured manufacturing facilities in 40 cities in six countries on three continents. If your facility has an interesting maintenance and/or reliability story to tell, please contact her at michelle@navigatecontent.com.

32

7:03 pm
April 12, 2017
Print Friendly

Human Reliability: More Than Half the Answer

klausblacheBy Dr. Klaus M. Blache, Univ. of Tennessee, Reliability & Maintainability Center

My prescription for achieving reliability incorporates human reliability. This human element consists of people, processes (engineering and machinery/equipment), and products that lead to best practices and customer deliverables. In short, the better you do things, the more availability and throughput you get.

Reliability is about dependable engineering processes that support designing-in and sustaining machinery/equipment (M&E), maintenance practices to enable early detection of issues, and specifications that guide the purchase of maintainable M&E. Aspects to consider include:

  • Accessibility
    • easing access in performing maintenance
    • eliminating the need for special tools to gain access
    • designing out the need to remove components and other items that haven’t failed to get to those that often do fail.
  • Modularity
    • making each equipment module easy to handle by one person
    • ensuring that disposable modules are easy to reach
    • designing out the need to dispose of long-life parts by using disposable parts.
  • Diagnostics
    • capturing enough data for problem analysis
    • analyzing faults and issues down to the component level
    • ensuring that performance data is captured and stored for analysis, supplier feedback, and internal continuous-improvement teams.

To me, maintainability refers to the “ease and speed of maintenance to return the system (people, process, machinery/equipment, and product) back to its original operating condition.” Maintenance is the repairing or servicing of a product or machinery/equipment. Maintainability is a design parameter (like the preceding examples) to minimize or optimize repair time.

Unfortunately, research shows that human error is still occurring at a high rate. Failure-rate studies have found that more than 50% of all equipment fails prematurely after maintenance work has been performed on it. This has been evidenced in many types of equipment systems and organizations. To better understand how human performance influences risk associated with nuclear power plant operations, the U.S. Nuclear Regulatory Commission (NRC) requested a study (INEEL/EXT-01-01166) that showed the average human-error contribution to the increase in risk was 62%. In the same study, maintenance practices and maintenance-work control errors were evident in 76% of the events, and operations errors were present in 54%.

What can be done? For new M&E, there’s an opportunity to design-in numerous maintainability concepts. More opportunity, however, is in existing facilities. A good first step would be to perform a PM Optimization (PMO) to eliminate any unnecessary tasks and related interventions.

A PMO will pinpoint if the M&E requires further design review, changes, and frequency in how those reviews are performed, or if they should be eliminated. Mature operations have lots of mistake-proofing and visual controls for operations. This technique should be expanded to include maintenance to support maintainability needs and reduce availability risk.

Human reliability is related to the field of human factors (ergonomics), which refers to designing work areas, work practices, and workflow to accommodate the capabilities of people (operators and maintainers). These factors can’t be ignored. This applies to all types of industries. According to the Occupational Safety & Health Administration (OSHA), 30% to 50% of your recordable injuries are somehow related to ergonomics.

Understanding and instilling human reliability, in turn, is the key in interconnecting the daily functional links to reliability and maintenance that drive real-world outcomes in availability. And it’s more than half of the answer. MT

Based in Knoxville, Klaus M. Blache is director of the Reliability & Maintainability Center at the Univ. of Tennessee, and a research professor in the College of Engineering. Contact him at kblache@utk.edu.

106

11:04 pm
April 6, 2017
Print Friendly

Big Data | Merge Control and Maintenance Data for Better Efficiencies

The IIoT framework shows how industrial data moves to the cloud for this Agile pilot project.

The IIoT framework shows how industrial data moves to the cloud for this Agile pilot project.

There’s an interesting Q&A post on Big Data, change culture, and control and maintenance data via a recent blog post from ARC’s IIoT Viewpoints site. The discussion includes Vish Avasarala, Co-founder of Saint Software Consultants, and Kenneth Smith, General Manager, Energy at Hortonworks.

There’s an interesting point about industrial manufacturing’s lack of flexibility, in general, and the challenges to change a work culture. I agree with this sentiment, in general, but the Agile project approach may help ignite cloud initiatives with some conservative manufacturers.

In the April Maintenance Technology print issue — and soon on maintenanctechnology.com — I write about HIROTEC’s condition monitoring pilot project that would fall under the Agile category. HIROTEC, a Tier-One supplier of exhaust systems for automotive OEMs, recently produced a six-week agile pilot project at their Michigan facility.

The goal was to show results quickly to management, albeit a small sample — eight legacy and new CNC machines.

Justin Hester, from HIROTEC, discussed the condition monitoring/cloud analytics pilot project in a recent National Association Manufacturing webinar:

HIROTEC argues, let’s do a small project. Let’s do a project that’s only six weeks long. It gets people excited. It’s not something that’s going to drone on for the next two years, where they have to devote the next two years of their life to as well as these other requests that will come in from the organization. They see light at the end of the tunnel already.

Hester added, “the Detroit pilot application was a success and HIROTEC is moving forward with IIoT pilot projects in Japan that deal with quality manufacturing.”

Click here to read the ARC interview >>

 

1601Iot_logoFor more IIoT coverage in maintenance and operations, click here! 

241

2:59 pm
March 8, 2017
Print Friendly

RDI Technologies’ Iris M Lets You See Subtle, Yet Harmful, Machine Motion

Screen Shot 2017-03-08 at 9.05.22 AMRDI Technologies (Knoxville, TN), says “seeing is believing” when it comes to the company’s Iris M powered by Motion Amplification video-processing product and software package. The patented technology measures subtle machinery motion (including deflection, displacement, movement, and vibration) and amplifies that motion to a level that’s visible to the naked eye (see example application video). Every pixel becomes a sensor, creating millions of data points in an instant.

According to RDI, the user simply has to point the camera at an asset, obtain the video data, and push a button to amplify the true motion of the entire field of view. By drawing a box anywhere in the image, he/she can then measure the motion with a time waveform and frequency spectrum.

Editor’s Note: A recently released Stabilization Update software module for the Iris M powered by Motion Amplification package allows users to  stabilize video that contains motion from camera shake due to environments where ground vibration is unavoidable (see video). In addition to automatically stabilizing based on the entire image, this update features an option to draw a Region of Interest (ROI) in the image that the user knows to be stationary. This helps in complicated motion environments.

For more information, CLICK HERE.

454

8:24 pm
February 9, 2017
Print Friendly

Listen for Impact

Above. Josh Mattson's desktop computer screen displays dB data collected from ultrasound probes that feed software to generate an oil-analysis report. Oil analysis has become a big part of reliability best practices at USG Interiors by providing insight as to when to filter oil, change oil, identify early signs of failure, or use to assist in analyzing data from other technologies such as ultrasound or vibration monitoring.

Josh Mattson’s desktop computer screen displays dB data collected from ultrasound probes that feed software to generate an oil-analysis report. Oil analysis has become a big part of reliability best practices at USG Interiors by providing insight as to when to filter oil, change oil, identify early signs of failure, or use to assist in analyzing data from other technologies such as ultrasound or vibration monitoring.

Josh Mattson drives key reliability programs using ultrasound and root-cause analysis. Continue Reading →

Navigation