Archive | Predictive Maintenance

144

1:18 pm
August 14, 2017
Print Friendly

Reliable Security Depends on Reliable Operations

Y-12 is the only site in the Nuclear Security Enterprise that can produce lithium materials. Replacement of the lithium operations is anticipated in the mid- to late-2020s.

Y-12 is the only site in the Nuclear Security Enterprise that can produce lithium materials. Replacement of the lithium operations is anticipated in the mid- to late-2020s.

A focus on PM optimization, culture change, sustainable processes, and employee empowerment drives reliability efforts at the Y-12 National Security Complex mini city.

By Michelle Segrest, Contributing Editor

Spanning 2.5 miles between its east and west boundaries, the 74-yr.-old Y-12 National Security Complex is a “mini city” inside the city of Oak Ridge, TN. Within its secure borders, are 379 buildings of manufacturing, production, laboratory, support, and research and development areas managed by Consolidated Nuclear Security LLC (CNS) under contract for the National Nuclear Security Administration (NNSA).

Y-12 also includes its own armed security force, fire department, steam plant, medical facility, cafeteria, and electrical-distribution center, all of which accommodate the nearly 8,000 people who work within the “city” borders each day.

Led by director of enterprise reliability and maintainability Joe Boudreaux, a 45-member reliability team is responsible for the proactive maintenance strategies of the buildings on the 811-acre campus. Deep into the second of a five-year reliability-improvement program, the team has built a firm foundation and is now strategically navigating its road map with the ultimate destination of establishing a sustainable, proactive maintenance program.

“Within the building site there are mini-plants within the city,” reliability and maintainability manager Paul Durko explained. “And within each of those mini-plants, certain processes, systems, and cultures that exist. Our goal is to secure a sustainable system of processes that work across the board, promoting an increase in overall reliability for this aging site. But it also has to be a system that will translate to a new facility—a $6.5-billion Uranium Processing Facility (UPF) that will be built and in operation by 2025.”

The Y-12 site houses many facility types, including some areas with gloveboxes.

The Y-12 site houses many facility types, including some areas with gloveboxes.

Y-12 history

Since 1943, Y-12 has played a key role in strengthening the United States’ national security and reducing the global threat from weapons of mass destruction.

The Y-12 National Security Complex is one of eight sites in NNSA’s Nuclear Security Enterprise (NSE). Y-12’s unique emphasis is in the processing and storage of uranium and the development of technologies that are associated with those activities. CNS also manages the 18,000-acre Pantex plant in Amarillo, TX, which is the primary U.S. nuclear weapons assembly, dismantlement, and maintenance facility. A majority of the weapons-related operations at Pantex are conducted on 2,000 acres of the site.

Constructed as part of the World War II Manhattan Project, Y-12 provided the enriched uranium for Little Boy, the atomic bomb dropped on Hiroshima, Japan to help the U.S. and its allies end a war that had taken 63 million lives worldwide. Afterward, Y-12 provided lithium-separation functions and key components for thermonuclear weapons. Y-12’s expertise in machining, handling, and protecting radiological materials has made the Oak Ridge site central to the nation’s nuclear security.

Y-12 has developed state-of-the-art capabilities in three core areas: nuclear technology and materials, security and consequence management, and manufacturing and technical services. Y-12 lends its specialized expertise to other federal agencies, such as the U.S. Departments of Defense and Homeland Security, state governments, and private-sector companies.

Projects at Y-12 include providing protective equipment to soldiers in combat, training National Guard units for radiological emergencies, and creating machining platforms that improve production and efficiency.

More than 9,200 Tennessee citizens work at Y-12, including federal and contractor staff.

“Our primary responsibility is to make sure the nuclear weapon is reliable,” Boudreaux said. “We do all of the testing and checking to make sure that if there is ever a need to use a nuclear weapon, that that weapon will work. The whole goal of the plant is global threat reduction, and when you think about all of the components that go into that, there are a lot of different things that have to be done here. So it’s not just a single process.”

In the early days, as it is today, maintaining building and process support systems was just as important as the process itself. In this photo, two men work on converter motors in Beta 3 while two others observe.

In the early days, as it is today, maintaining building and process support systems was just as important as the process itself. In this photo, two men work on converter motors in Beta 3 while two others observe.

Pursuing world-class reliability

With a commitment to reliability and with corporate support, Y-12 commissioned the Univ. of Tennessee’s Reliability and Maintainability Center (UTRMC) to perform benchmark assessments. The next step was building pillars for the foundation of an overall reliability program. This included plans for an improved culture, PM optimization, training and education, full utilization of technology and software, increased ratio of proactive to reactive maintenance, continuous-improvement plans, scheduling improvements, and employee retention.

The UTRMC provided a subject-matter-expert (SME) analysis of the current state of the Integrated Work Control (IWC) and Maintenance Execution processes. The evaluation consisted of site visits and evaluations of the essential elements including:

• synchronization of production, engineering, and maintenance reliability improvement efforts
• targeted opportunities for improvement
• plant employee training opportunities
• methodology for transitioning plant personnel from tactical (reactive) maintenance
• methodologies to a strategic posture
• development of a reliability-based plant culture.

We talk a lot about the ratios between how many corrective maintenance jobs to do and how many things we do that are proactive,” Boudreaux said. “When you look at Y-12, you can’t just look at that globally. You have to look at the individual component. If you would take a step back, we are a very reactive maintenance organization. So what we have done over the past few years is try to turn that from a very reactive program into a proactive program. A lot of things we are seeing are all these unplanned failures. And honestly, maintenance has become very, very good at firefighting. But it is very, very expensive to do that.”

The pursuit for world-class reliability has been a slow but fruitful process. 

“The way that our program was set up, we feel like we have turned the big battleship,” Boudreaux said. “It’s a big ship and requires a slow move to get it to turn that corner.  One way to be more cost effective is to decrease the amount of corrective work that we do. How do we do that? We reinvest in the plant. We get new equipment, and we maintain it the way we are supposed to, but we also look at the equipment that we have and ask what we can do to increase the reliability of those assets. We know that doing preventive maintenance is safer, but we can also save costs this way.”

One huge early success has been optimization of the PM program.

“We have increased the interaction of our crafts with the development of our packages,” Boudreaux explained. “By going through our PM Optimization (PMO) process, we now have more thorough documentation and better estimates of the time and resources required for each PM. We can now identify the costs and the benefits.”

A worker wearing protective gear walks down a hallway in Building 9212. The building’s aging infrastructure and equipment make obtaining replacement parts for electrical, ventilation, fire-protection, and other systems a challenge.

A worker wearing protective gear walks down a hallway in Building 9212. The building’s aging infrastructure and equipment make obtaining replacement parts for electrical, ventilation, fire-protection, and other systems a challenge.

The next step is communication. “It hasn’t been a difficult sale because very few people would drive a car for two years and never change the oil,” Boudreaux explained. “A robust PM program just makes good sense.  And we now have documentation that clearly lays out the tenants of reliability. We now have a road map that explains what we have done and what we should be doing over the next few years. Part of the plan is to ensure this plan is communicated to everyone in the plant.”

Communication helps to provide influence within the organization.

“Paul’s [Durko] responsibility is to influence the maintenance craft, for example,” Boudreaux said. “He works with the maintenance manager and his maintenance-execution team. He is arranging for additional training to help improve skills and capacity. With great communication and influence, we can produce a better-quality product for our customer. The road map shows how everything fits together for the future.”

One of Y-12’s core missions—maintaining the safety, security, and effectiveness of the U.S. nuclear weapons stockpile—translates into the overall reliability mission.

“If you want to think of similarities, you can look at the production goals for our different systems,” Durko said. “We must break down the different processes, look at the availability requirements for that equipment, and understand what we are doing to ensure the equipment can meet those production goals. What we did well for many years is that when it breaks, we are going to fix it. With an aging facility and with this aging work force, the challenge now becomes how to do it cheaper. How are we effectively managing our assets? What appropriate programs do we have in place to ensure that that equipment will operate when it is supposed to operate? This is how we integrate the idea of reliability across the site.”

With a distinct plan and road map to get there, all the pieces begin to come together.

We understand that each milestone is just a piece and not overall reliability,” Durko said. “We now consider all of the tools in our tool belt—RCM analysis, PdM technologies, SAP integration, procedural requirements, etc. Bringing all the tools together to make the systems cost effective and also ensure the safety of our people and equipment are the ultimate ingredients that will get us to overall reliability.”

Operations at Y-12 are varied and complex, presenting a wide range of maintenance challenges.

Operations at Y-12 are varied and complex, presenting a wide range of maintenance challenges.

Proactive maintenance

The focus in the first year was building a robust proactive maintenance program, Durko said. “Our past strategies and mission focus have caused us to become superb at finding ways to keep our failing systems running. We have begun shifting our mindset.”

The Y-12 site averages 2,750 completed maintenance orders each month, with an average of 99% utility availability, and has set a goal of 40% reduction in planning time.

“We are now averaging 64% reduction in planning time,” Durko said. “We are also proud that we recently reached 50,000 safe work hours with the PMO program. A bonus result is a 20% reduction in execution time. That is easy to sell to customers. Any time you say optimization, you automatically think of cutbacks and loss of jobs.” He added that because the plant had been in a reactive mode, they have been able to talk about the amount of reactive versus proactive work and actually improve the PM program.

The proactive maintenance strategy includes condition-based maintenance using ultrasound and vibration analysis tools, Durko said. “Also, document control is a key tool. We are dependent on what all that data is telling us to be able to make our decisions.”

With the proactive strategy taking shape, the next step is standardization, Durko said. “Having a repeatable process is key. We have standardized the format in a way that the crafts can better use—they actually helped us develop the format, so now it’s about execution. Next, we want to find a way to better rely on our predictive methodologies and leverage our technology. Hopefully, the data will tell us what is the next step. Meanwhile, we are refining our lubrication program with ultrasound and honing our precision-maintenance skills.”  None of the improvements made thus far would be possible without the interface and support of the technician work force.

When Y-12 researchers aren’t analyzing uranium, they are finding new ways to detect it. This photo is from a project designed to grow lithium semiconductor crystals suitable for radiation detection, which is the first step in solving a global shortage of Helium-3, the most common element used in current detectors.

When Y-12 researchers aren’t analyzing uranium, they are finding new ways to detect it. This photo is from a project designed to grow lithium semiconductor crystals suitable for radiation detection, which is the first step in solving a global shortage of Helium-3, the most common element used in current detectors.

What’s next?

The next goal is to increase condition-based maintenance work by 15% in the next fiscal year. 

“I don’t think our road ever ends,” Boudreaux said. “You can always find a way to be even more reliable. But if we have that foundation, and we build off of that, then every time we bring something in, we can evaluate it against what we are trying to achieve with the program and see whether or not it has value. Having a firm foundation allows us to do that. The exciting part is to have some programs in place and begin to see the data that tell us it’s working.” MT

Y-12 by the numbers

Y-12 today:

• 811 acres, including 150 that are high security
• 7.3 million sq. ft. of laboratory, machining, dismantlement, research and development, and office areas
• 343 buildings, 13 mission-critical facilities
• 48% of all Y-12 facilities are more than 60 years old
~9,300 personnel at Y-12
~4,700 CNS employees; remainder are subcontractor and federal employees
Deferred maintenance of $354 million
• Contracts with more than 770 small businesses, totaling $177 million in FY 2016.

Y-12 site includes:

• 550,000-sq.-ft. on-site leased facilities (Jack Case and New Hope Centers)
• 24 mi. of paved roads
• 10 mi. of overhead steam lines
• 3 mi. of natural-gas-distribution lines
• 55 mi. of aerial electrical-distribution lines
• 10 mi. of underground electrical-distribution lines
• 19 mi. of main water piping
• 50 mi. of storm drain lines
• 15 cooling towers.

Michelle Segrest is president of Navigate Content Inc., and has been a professional journalist for 28 years. She specializes in creating content for the industrial processing industries. If your facility has an interesting maintenance and/or reliability story to tell, contact her at michelle@navigatecontent.com.

64

7:22 pm
August 10, 2017
Print Friendly

Drowning In Data? Look To The ‘Stars’

Identifying and acting on the right data can transform reliability and maintenance programs from resource black holes to key business drivers.

By Jane Alexander, Managing Editor

Advances in common communication protocols and wireless networks have created the Industrial Internet of Things (IIoT), technology that connects everything from material supply through manufacturing to product shipping. As IIoT data quantity increases, plant personnel are in danger of drowning in a flood of information. The dilemma for many is how to make sense of it all and derive answers that help them successfully operate and maintain their processes. Keith Berriman of Emerson (Round Rock, TX) advises to “look to the stars.”

To put things in context, a bit of history is in order, beginning with the ancient Greeks. They, according to many scholars, were some of the first people to recognize patterns among the seemingly endless numbers of stars filling the night skies from horizon to horizon. Assigning names to groups of conspicuous stars, i.e., constellations, they wove references to them into their beliefs, literature, and other forms of cultural expression. Over the centuries, explorers and others have looked to many of these constellations to locate certain stars that could help them navigate the globe.

While not advocating that plant personnel take up actual celestial navigation, Berriman encourages them to consider a similar approach when dealing with the seemingly endless amounts of IIoT-generated data they’re confronting. As he explained, they can locate specific “stars” in their facilities that will tell them about the condition of assets and processes and, in turn, allow them to take action to prevent and mitigate failure. It’s an approach that’s feasible for virtually any plant.

“From an economic perspective,” Berriman said, “the cost of installing connected devices that run on wireless networks has fallen to less than 20% of traditional wired devices. This allows us to install sensors on all sorts of equipment that we previously would have to monitor with hand-held devices or through some type of invasive inspection.” That’s the good news.

The bad news is, despite the affordability and widespread availability of continuous-monitoring technologies, personnel still need to know what to look for amid the data that constantly streams from them. Unfortunately, all systems for analyzing such information are not created equal. “Depending on the system you use,” Berriman observed, “you may not be getting a full and correct picture of equipment and process conditions in your plant.” This is where his “look to the stars” approach to data pays off.

Bringing order to chaos

Berriman’s approach starts with sorting data into fixed and variable groups. “This,” he said, “helps us solve the risk-identification and -mitigation equation.”

Fixed data is set when the plant or system is built or modified. This includes:

• plant layout
• equipment design
• equipment data
• material master data (spare/OEM parts)
• performance parameters
• potential failure data.

These items become the known variables in the risk-identification and -mitigation equation. Variable data, though, changes during the operation of a process or asset, including, among other things, as a result of raw-material composition, process variation, weather, equipment condition, and work history.

By selecting the right data points, personnel can populate the equation and determine their position, which, in this case, means the condition of their site’s assets. Doing this requires building a set of “constellations” to identify and capture critical asset data.

A reliability program is designed to proactively identify and mitigate failures, while eliminating defects. A maintenance program is designed to preserve or restore function to a system. Effective data constellations allow reliability and maintenance teams to detect and repair problems before they have an impact on performance.

Data and reliability programs

An effective reliability program consists of interconnected building blocks that include the following four steps, aimed at identifying impending failures with enough warning to allow repair or replacement. Root Cause Failure Analysis (RCFA) determines the causes of unexpected failures to improve the program and avoid similar events.

Build a complete master equipment list (MEL). The MEL includes the fixed data for the next steps in the process and the information required for planning and scheduling work and ordering parts and materials.

The MEL also contains an organized hierarchy of assets that users can follow to identify equipment. Ideally, the branches should extend down to the “functional location,” i.e., the place in the process where an asset operates. Associating a particular asset with a unique identifier allows it to be tracked as it moves from one location to another.

To complete the MEL, fixed data must be associated with each asset. This includes, among other things:

• equipment type (pump, motor) classification (centrifugal), location, process and operating information, process drawings, size, power, material of fabrication, and motor-frame size

• bills of material (BOMs), i.e., spare parts needed to make repairs to the equipment.

CMMS systems organize and sort this information in various ways and allow the roll-up of metrics, costs, and information to identify performance and trends.

Rank asset criticality. With an accurate MEL, sites can rank the criticality of their assets. While organizations often focus on one potential impact, such as production or safety, to completely understand the relative criticality of their equipment systems, they need to review a number of factors. Five basic categories are used to determine asset criticality:

• safety
• environment
• production
• maintenance cost
• quality.

Additional categories may be used and the weighting adjusted for the specific process under review. Weighting uses a series of questions with points associated with the severity of impact.

Ranking asset criticality requires data and expertise. The resulting distribution can be sorted into categories to determine the next level of analysis and develop preventive- and predictive-maintenance (PM and PdM) programs. Criticality should also be used to prioritize work and ensure high-risk issues are addressed in time to prevent failure.

Develop strategies. At this point, strategies to detect and mitigate impending failures can be developed. Tools for doing so include Reliability Centered Maintenance (RCM) and Failure Modes and Effects Analysis (FMEA). They ask structured questions about the function of an asset, how it might fail, the impact of failure, and how to detect signs of failure. Since RCM requires a team of subject-matter experts and significant time, it should focus on the critical group of assets and systems. FMEA, which can be conducted by one or two participants, should focus on the essential group. Templates can be used to create strategies for the monitor group. In applying templates, it’s crucial to understand the context of an asset, given the fact the same equipment in different locations may not require the same strategy.

Note: Since the impact of their failure isn’t great, assets that fall into a No Scheduled Maintenance group won’t require routine or continuous monitoring.

Select PM/PdM condition-monitoring tools. Understanding failure modes allows personnel to select the appropriate tools for the job. Typically, this selection is based on the warning that a tool provides and the cost of performing the task. The classic P-F (performance-failure) curve illustrates the relative effectiveness of different techniques. IIoT data allows sites to combine indicators and move further back up this curve to provide earlier warnings of failure and, thus, allow plant personnel more time to plan repairs and procure replacements.

Once personnel know the data they require from a site’s network of instruments, analytics, and inspections, they can generate alerts and warnings to restore assets to good operating condition. The more advanced warning they have, the more planned and organized they can be. To that end, they should set warning alarms that allow time to plan and action alarms that indicate when prompt intervention is required. These alarms, and the data they generate, are an important part of the solution to the risk-identification and -mitigation equation, in that they help determine asset condition. As Berriman emphasized, however, “The information must still be acted on.”

Data and maintenance programs

Regardless of industry sector, type of operation, or location, one constant is the basic maintenance process. All plants need to complete the following six steps to be consistent, strong performers

Identify work. Maintenance work is identified through a variety of sources. Most work should come from PM/PdM activities and the previously described warnings and action alerts. However, there will be issues identified by operations that the program missed, requested improvements, and other tasks. These issues need to be reviewed and approved before effort is expended on planning and scheduling.

Work entering the system needs to be reviewed for the completeness of information and approved before moving to planning. Known as gate keeping, this requires a dedicated resource for consistency. Ideally, the gate-keeping role belongs to Operations, i.e., the equipment owners.

Plan work. Planning is where a job is broken down into a logical sequence of tasks, maintenance craft assigned, parts ordered, and other resources identified, including such things as scaffolding and contractors. A good job plan allows accurate scheduling and work execution. Job plans should include safety and environmental precautions, work permits, and other procedures. Data collated at this step should include equipment data, materials/parts data, work history, safety/environmental data, and resource availability.

The output of this step is a backlog of planned work to build schedules and balance workforce composition, especially where contract resources are used to augment in-house maintenance personnel.

Schedule work. This step takes the job plan data for duration and resources, and integrates production-planning data and asset criticality to create a maintenance schedule that fits the production schedule. This requires collaboration between departments to understand priorities, equipment availability, and other issues. The scheduler role should be owned by Operations since, again, it owns (controls) the equipment.

The outputs of scheduling are long-range plans and a weekly calendar of maintenance work used to create daily schedules. Daily scheduling is a joint effort to select new work for the next day from the weekly schedule and to ensure incomplete work is carried forward.

Execute work. When a day’s schedule is completed, Operations can prepare the equipment and Maintenance can execute the work. This phase includes the integration of unplanned work that might supersede scheduled tasks, known as break-in work. This work needs to be managed to prevent organizations from becoming highly reactive.

Maintenance supervisors need to monitor progress on work to communicate with Operations and to ensure time is added to the next day’s schedule for incomplete work.

Follow up/capture data. Upon completion of work, data must be captured to drive analysis, planning, and other activities. That includes capturing “as found/as left” data for instruments, repair history, failed components, time, materials, and labor, among other things. The information should then be recorded in the CMMS for future use. Responsibility for this step typically falls to maintenance technicians and supervisors.

Analyze data. Once data has been captured, analysis can be performed on failure modes to determine and mitigate bad actors, or equipment with high costs and downtime. Cost and lost-production data can be used to understand budget variances and drive key performance indicators (KPIs). Reliability teams use maintenance data for detailed statistical analysis, such as Weibull, that identify patterns of failure and predict future events.

Navigating your data

According to Keith Berriman, the Industrial Internet of Things is an opportunity to increase the generation of accurate timely data without the use of invasive and time-based processes. As the integration of systems improves, the interconnectedness of data allows more accurate and simplified presentation of information for repair/replace decisions.

“But,” he cautioned, “too much unnecessary data can obscure the information personnel are looking for and hide problems that might become critical and dangerous. While technology is a great enabler, without a strong foundation, it won’t deliver the results plants seek. “The key,” Berriman concluded, “is to be able to identify and then act on the right data.” Looking to specific “stars” in your plant is a good way to ease that voyage. MT

Keith Berriman P.Eng, CMRP, is a senior reliability consultant for Emerson, based in Edmonton, Alberta. For more information, email Keith.Berriman@Emerson.com.

114

7:38 pm
June 28, 2017
Print Friendly

Ultrasonic Gas Flow Meter

1707mtprod13pQ.Sonic ultrasonic gas flow meter combines reflective and direct paths. This allows the device to detect and correct disturbances in the gas flow caused by short inlets, extenders, reducers, manifolds, elbows, and a range of other piping elements. The meter meets the accuracy class 0.5 requirements of the International Organization of Legal Metrology R137-1&2 2012 without any exclusions.
Honeywell Process Solutions
Houston
honeywellprocess.com

58

4:56 pm
June 22, 2017
Print Friendly

Predictive, Prescriptive Maintenance

Predictive maintenance software is part of the company’s Information Solutions portfolio. The software learns patterns that precede downtime events identified in the users history, then trains agents to recognize those same patterns in the future. As new data is generated, machine-learning agents provide around-the-clock tracking of all live sensor date, looking for the patterns identified. Agents can watch for atypical patterns that may represent new failure modes to be investigated. Prescriptive alerts can be put into action through email and text alerts, a web application, or integration with CMMS. The predictive software also includes a work-order capability.
Rockwell Automation
Milwaukee
rockwellautomation.com

58

5:09 pm
June 16, 2017
Print Friendly

Remote Monitoring Takes Hold in Oil & Gas

template_960x720

Pioneer Energy Inc. provides a turnkey service that captures flared gases at the field site by way of a Mobile Alkane Gas Separator (MAGS) unit, separate from the well-drilling application.

By Grant Gerke, Contributing Editor

Digital transformation applications in 2017 are moving fast and taking diverse forms. Many industries, such as oil and gas and petrochemical, are quickly acting on better data-acquisition models so operators can move toward online condition-based monitoring for pumps and motors.

According to Brian Atkinson, a consultant with the Industry Solutions Group of Emerson Process Management (emersonprocess.com, Shakopee, MN), pumps account for an estimated 7% of maintenance costs of a plant or refinery. “While a pump failure in a refinery may only affect one part of a process,” he said, “pump failures in an oil field can shut down a well or pipeline,”

During the oil-market boon, operators took run-to-failure approaches with pumps and motors, and didn’t install cost-prohibitive wiring to monitor such units in the field. Wireless-network-standardization efforts over the last decade, however, have provided operators the ability to implement condition-monitoring strategies and avoid costly shutdowns that may seem necessary in lower-price markets.

As an example, Atkinson pointed to a white paper, titled, “Beyond Switches for Pump Monitoring,” from Emerson Automation Solutions. It details how oil and gas processing facilities can use cost-effective transmitters to provide continuous condition monitoring and a richer data set on in-the-field pumps. Among other things, it recognizes the American Petroleum Institute (API) Standard 682 that provides a roadmap for achieving continuous monitoring with IIoT-based solutions. This standard defines piping plans for pumps to assist processing facilities for the selection of the type of sensors and controls for pump auxiliary-seal flush systems.

The Internet of Things is changing the maintenance and reliability world. Keep up to date with our ongoing coverage of this exciting use of data and technology at maintenancetechnology.com/iot.

The Internet of Things is changing the maintenance and reliability world. Keep up to date with our ongoing coverage of this exciting use of data and technology here.

The white paper illustrates that traditional mechanical switches provide on/off data, while transmitters can communicate a broad range of measured variables and facilitate remote configuration, calibration, and diagnostics. With the transition to transmitters in the field, management can reduce field-maintenance service trips and reallocate those services to other resources.

A prime example of the process industry’s move to continuous, remote monitoring is Pioneer Energy’s captured gas-flaring application for remote shale fields. The Lakewood, CO-based corporation (pioneerenergy.com) provides a turnkey service that captures flared gases at the field site by way of a Mobile Alkane Gas Separator (MAGS) unit that’s separate from the well-drilling application.

Oil-and-gas-shale producers have usually thought of flared gas as a waste product. Remote monitoring, though, gives them the ability to resell or use it to power drilling operations wherever they may be. In Pioneer Energy’s case, that means being able to monitor the gas-separation unit in a central control room hundreds of miles away from well sites.

Pioneer Energy still provides technician services for minor maintenance of its remote MAGS units. According to the company, it uses Opto 22’s groov mobile monitoring to provide field technicians monitoring and control onsite through mobile devices.

“Our service technicians in the oilfield have 4G AT&T tablets that link to the groov server, which is connected to the OPC server,” said Andrew Young, lead controls engineer at Pioneer Energy Services. “They can see real-time operations as they’re enroute to a site to do a service call.”

Pioneer Energy’s gas-separator service is the embodiment of a new business outcome enabled by advanced sensor networks in a legacy environment. These types of small optimization strategies have begun to take hold in the oil and gas industry, and should be the rule instead of the exception going forward. MT

ggerke@maintenancetechnology.com

341

8:35 pm
June 15, 2017
Print Friendly

Glimpse The Future Of Predictive Maintenance

Critical-asset data can help identify failures before they occur to avoid downtime and protect the bottom line.

Catching problems in their earliest forms, no matter where in an operation they might arise, can help reduce downtime, costs, and risks.

Catching problems in their earliest forms, no matter where in an operation they might arise, can help reduce downtime, costs, and risks.

If you could see into the future, you would never miss a production target, endure a safety incident, or have a machine go down. Unfortunately, unless we somehow gain the power of clairvoyance, this fantasy will forever be out of our reach. While we may not be able to see into the future, we can predict it.

By adopting a predictive-maintenance (PdM) strategy, you can mine your critical-asset data and identify anomalies or deviations from their standard performance. Such insights can help you discover and proactively fix issues days, weeks, or even months before they lead to failures. This can help you avoid unplanned downtime, reduce industrial maintenance overspend, and mitigate safety and environmental risks.

The case for predictive maintenance

The sudden loss of a critical industrial asset can be devastating. It can result in unplanned stoppages and maintenance that eat away at your bottom line, while production remains at a standstill. This was the situation for one company operating an oil-sands mine in Canada. The company had to shut down the operation after detecting vibrations in an ore crusher, resulting in a weeks-long production stoppage that had been averaging more than 90,000 barrels/day. According to analysts, each week of downtime reduced quarterly production by about 1.5% and cash flow by about 1%.

Beyond the impact on production and profits, unexpected failures also can cause catastrophic events, such as explosions or chemical leaks, that threaten lives and the environment.

Many companies use robust industrial-maintenance programs and costly maintenance-service agreements to help avoid these issues. However, even the most comprehensive maintenance programs likely won’t eliminate all unplanned downtime. It can only take one failure to grind your operations to a halt for an extended period of time.

While technicians may not be able to actually ‘see’ into the future, smart technologies and advanced analytics can help them predict it.

While technicians may not be able to actually ‘see’ into the future, smart technologies and advanced analytics can help them predict it.

A smarter approach

Predictive maintenance delivers a more data-driven approach to industrial-maintenance programs. It uses predictive analytics and machine-learning algorithms, based on historical and real-time data, to identify specific issues on the horizon. Often these issues won’t show any physical signs of degradation—even a sharp human eye or an intuitive and well-trained maintenance technician wouldn’t be able to catch them.

In addition to helping prevent downtime, a PdM approach can better identify true maintenance needs. This can assist in making sure that you are targeting personnel depolyment, maintenance activities, and maintenance dollars where they are needed most.

Predictive maintenance can be especially useful in industries where the uptime of critical assets drives the bottom line. This includes large, heavy equipment in oil and gas, and mining operations, as well as critical machines in continuous-manufacturing operations.

A perfect example is a large, multistate compressor that experienced a bearing failure resulting in more than $3 million in maintenance and lost productivity. A postmortem on the incident, which involved reviewing 16 months of data, found that the bearing cooling system had not been operating correctly for six months.

Had this data been used as part of a PdM strategy, the company likely would have been able to identify the bearing degradation and its root cause before the failure actually happened. What’s more, the company would have been able to identify detailed preventive-maintenance steps for the cooling system.

Predictive maintenance also can be valuable in operations that experience high maintenance costs.

Often, companies can invest a lot of time and resources in maintenance but lack data to know whether their strategy is effective and addressing their actual needs. Predictive maintenance can help uncover unnecessary maintenance, which could save millions of dollars every year in some industries. This was another discovery in the compressor case. The company was performing certain maintenance activities that were unnecessary and could have been eliminated.

How it works

Predictive maintenance doesn’t require an extensive overhaul of your infrastructure. Rather, it can be deployed on your existing integrated-control and information infrastructure.

The process begins with discussions to identify what data you want to collect, what potential failures or other issues you want to predict, and what issues have arisen in the past. From there, the relevant historical data is collected from sensors, industrial assets, and fault logs.

Predictive-maintenance analytics software then examines the data to determine root causes and early-warning indicators from past downtime issues. Finally, the analytics software develops and deploys “agents” that monitor data traffic either locally or in the cloud.

Analytics software uses two types of agents. The first type is failure agents, which watch for patterns that are known to predict a future failure. If such patterns are detected, the agents alert plant personnel and deliver a prescribed solution.

The second type is anomaly agents, which watch normal operating patterns and look for changes, such as operating or environmental-condition changes. These agents also alert personnel of any detected changes so they can investigate and take corrective action if necessary.

Your crystal ball

Predictive technology has been around for decades. It’s used to detect credit-card fraud, fine-tune marketing programs, and even help us search the Internet. Its role in the industrial world takes the form of a rigorous documentation of events and failures that can help us see and address machine or equipment issues in their earliest forms.

Many manufacturers already see the value of historical failure reports as a tool to help prevent failures and downtime in the future. By using this data, which already exists in your assets, you too can reduce downtime surprises, cut down unnecessary maintenance, and potentially reduce risks in your operations. MT

Information for this article was provided by Doug Weber, engineering manager, and Phil Bush, remote monitoring and analytics product manager, Rockwell Automation, Milwaukee. For more information, visit rockwellautomation.com.

316

8:30 pm
June 15, 2017
Print Friendly

AZ Puts Proactive in Reliability

Biopharmaceutical manufacturing company AstraZeneca redefines reliability to streamline more-effective maintenance processes.

1706fprofile05p.jpeg

By Michelle Segrest, Contributing Editor

Even though the AstraZeneca manufacturing facility in Mt. Vernon, IN, looks like a hospital surgical unit—with key equipment separated into concentrated clean rooms—for years it operated like an emergency room. When an equipment breakdown occurred, personnel jumped into action, triaging the issue and not always looking into the true symptoms to prevent future occurrences.

At AstraZeneca, separating the reliability people from the day-to-day commotion, defining the difference between reliability and maintenance, and management support were keys to a successful transition to a reliability-oriented operation. Photo: AstraZeneca

At AstraZeneca, separating the reliability people from the day-to-day commotion, defining the difference between reliability and maintenance, and management support were keys to a successful transition to a reliability-oriented operation. Photo: AstraZeneca

The company acquired the Mt. Vernon facility in August 2015. With a new reliability unit in place and an Operations Excellence Team, the site now has teams focused on preventing emergencies, instead of addressing them.

Reliability and maintenance can be a challenge when maintaining a high standard for the pharmaceutical environment. As you walk through the facility, the white walls and floors glisten against the shiny, almost mirror-like, stainless-steel equipment. Equipment and personnel rooms serve as airlocks between the corridors and the manufacturing rooms. The airlocks are guards against dust, dander, allergens, or other elements that could contaminate the critical medicine that is being manufactured. The switch from a reactive to a proactive, risk-based, approach has taken reliability in the 700,000-sq.-ft. manufacturing area to a new level.

“Our first step was to separate our reliability team from the day-to-day commotion,” explained facilities engineer Andrew Carpenter. “We had to be sure they understood that reliability is different than maintenance, and we had to all take this seriously. We had many people who were specialists and were relied upon for troubleshooting and fixing emergency issues. It was a complete mindset change.”

The new reliability team received support from upper management and buy-in from the team. Although some roles changed, the team remained headcount neutral. This, along with clear alignment of goals, became the keys to a successful transition.

“If you are starting a reliability program in your plant, call it what it is,” senior building and reliability manager Chris Nolan said. “Reliability is different than maintenance. The goal is to get to a certain utopia. As your group grows, you all become more focused on that reliability side, but when you are starting out with a reactive-maintenance program, and you want to transition to one that is reliability based, there is a different vision. This must be explained and understood.  Now we have processes in place to aid in the prevention of emergencies and more organized efforts to quickly respond should the need arise.”

With an investment in new tools and technology, including additional vibration, infrared thermography, and ultrasound training, the newly structured, two-year-old team measures its return on investment in high-quality performance and products.

“A key driver within our business is quality,” Nolan said.

AstraZeneca is a science-led, biopharmaceutical business that discovers, develops, manufactures, and supplies innovative medicines for millions worldwide—primarily in the areas of respiratory, cardiovascular and metabolic, and oncology. The Mt. Vernon site manufactures oral-solids medicines—primarily for Type 2 diabetes treatment.

The maintenance and reliability group focuses on maintaining the utilities, purified water, HVAC, manufacturing equipment, and all Good Manufacturing Practice (GMP) maintenance.

Maintenance technician Dan Guth concentrates on a detailed work request in the maintenance shop.

Maintenance technician Dan Guth concentrates on a detailed work request in the maintenance shop.

A new process

The Mt. Vernon-site reliability team adopted a common mission statement from the industry. “Anyone who improves a process or a piece of equipment is a reliability leader.”

The simple vision was broken down into specific goals and targets. Nolan explained that 2015 was all about building a foundation, while 2016 was the year to focus on root-cause analysis. The team received early help from consultant group Life Cycle Engineering (LCE, Charleston, SC, LCE.com).

“In pharma, when somebody uses the word ‘criticality’ they go straight to quality,” Nolan said. “LCE helped us identify the tools we needed to show overall criticality—business cost, quality, mean time between failure. Andrew [Carpenter] led us through a criticality assessment at our site and we banked that into different categories, including equipment, water purification, parts redundancy, and packaging items. Now we do an assessment and re-rank our critical categories that need attention every year. We are in the process of doing that now. This helps us focus our efforts and has become a game-changer for us.”

The reliability group became its own entity within the plant’s maintenance organization.

“We were doing a really good job of fixing issues, but needed to work on following up after the issue, getting to the root cause, and putting processes in place to prevent the issue from happening again,” Carpenter said.

Two years in, Carpenter and Nolan are beginning to see the fruits of the team’s labor. “We can see that it is working and we have come a long way.”

Maintaining the reverse-osmosis purified- water-generation system at the AstraZeneca plant is critical to ongoing production.

Maintaining the reverse-osmosis purified- water-generation system at the AstraZeneca plant is critical to ongoing production.

Early wins

Redefining the maintenance and reliability functions was an anchor in achieving some early wins for the new team.

“We are all here to get the product out of the door, but the difference is simply the things we focus on,” Nolan said. “Maintenance right now focuses on the day-to-day activities—the preventive maintenance piece and execution of that at a high level. But when you are executing you are challenged on the day-to-day things, so it is hard to find that balance of time to take a look back on the long-term items, like the vision. For us, the difference between maintenance and reliability is that reliability is getting into the data mining of the maintenance activities. Particularly in the pharma environment, that is a big piece that ties back to the quality culture, as well. The maintenance piece is very tactical, while reliability centers around more planning and vision.”

Carpenter said the team’s vision began to take shape when it zoomed in on the root-cause analysis program. About six months into the program’s launch, Nolan began to notice a distinct change in the culture.

“It was a Friday afternoon before a three-day holiday weekend and normally everybody was ready to scoot,” he said. “We had one of our metrology calibration technicians and engineering technicians having a serious conversation about a particular problem. It turned into an hour-and-a-half discussion of digging into really finding the problem, turning it into a root-cause analysis. That is the first time when I really thought this whole program began to click. These guys were looking beyond the fix and they were passionate about preventing it from happening again.”

Andrew Carpenter, Neil Reichel, Chris Nolan, and author Michelle Segrest (l-r), discuss reliability and maintenance operations in the AstraZeneca maintenance shop.

Andrew Carpenter, Neil Reichel, Chris Nolan, and author Michelle Segrest (l-r), discuss reliability and maintenance operations in the AstraZeneca maintenance shop.

Carpenter explained that the change involved a clear switch from simply fixing a problem to a focus on the big picture. “We are better at documenting the data and finding ways to prevent failures,” he said.

One of the areas the team focused on heavily at the start of the reliability program was predictive maintenance. Engineering technicians and predictive-maintenance technicians were sent to Level I vibration, infrared, ultrasound, and laser-alignment training. It didn’t take long to see the return on investment.

Nolan said another key win was bringing the storeroom into the reliability discussion.

“The storeroom is a key to reliability,” Nolan said. “Paying attention to what is going on in the storeroom tells you what is going on in the plant. What goes out of your storeroom is a huge check and balance of your maintenance process.”

Realizing how much can be learned from problems and mistakes also made a big difference.

“Problems are gold,” Nolan said. “Problems within your processes give you ‘aha’ moments. This allows you to bring people together to look at what is going on and talk about how can it be better. Don’t ever be afraid to share a problem because usually it can positively impact you, your group, or someone else.” MT

Michelle Segrest is president of Navigate Content Inc., and has been a professional journalist for 28 years. She specializes in the industrial processing industries and has toured manufacturing facilities in 41 cities in six countries on three continents. If your facility has an interesting maintenance and/or reliability story to tell, please contact her at michelle@navigatecontent.com.

61

7:45 pm
June 15, 2017
Print Friendly

Musings on Maintenance And Mobility

klausblacheBy Dr. Klaus M. Blache, Univ. of Tennessee, Reliability & Maintainability Center

What we do and how we do it have changed dramatically with regard to maintenance and its impact on reliability. Gone are the days when you could easily repair most things on your car and perform regular maintenance. Today, it’s all about computer sensors, algorithms, and data historians. As a result, in most cases, we take for granted that our transportation modes are adequately maintained and reliable. Let’s look at some snippets of what’s going in areas of reliability and maintenance (R&M) on cars, trains, planes, and ships.

Cars: Tesla’s plant in Fremont, CA (tesla.com, Palo Alto) is now the most advanced and talked about automotive factory in the world. The site was the former home of New United Motor Manufacturing Inc. (NUMMI), a joint venture of General Motors and Toyota (1984 to 2010). Based on my scan of recent Tesla job postings, maintenance technicians in Powertrain are expected to perform at a Journeyman Level on all machines in the assigned area and be responsible for preventive maintenance, troubleshooting/repair, clean lines, and escalation of assigned equipment. Individuals in these roles must be willing to tackle whatever maintenance challenge arises and to assist and learn from others in their areas of expertise. A sampling of the posted jobs seems to highlight the company’s interest in worker flexibility and high levels of employee engagement. This doesn’t mean maintenance technicians are expected to have all the answers regarding plant culture. Installing and sustaining an autonomous workforce may be more difficult than building autonomous vehicles.

Advances in technologies, approaches, and methods are helping to keep our various modes of transportation moving, as well as ensuring that they are reliable and safe.

Advances in technologies, approaches, and methods are helping to keep our various modes of transportation moving, as well as ensuring that they are reliable and safe.

Trains: Railways are considering using drones to help with security, initial track inspections, and predictive maintenance. Some already leverage them for safe, economical checking of switch-point heating systems. Other advanced-technology approaches include the use of: wheel-temperature detectors (infrared) to check brakes, wheel-profile monitors (lasers and optics) to assess wheel wear, and acoustic-detector systems (acoustic signatures) to identify wheel-bearing failure. Deutsche Bahn (DB) and Siemens are piloting predictive analytics to avoid failures and make vehicle maintenance recommendations. All diagnostic data is ultimately made available to maintenance personnel.

Planes: The 472 million-cubic-sq.-ft. Boeing aircraft plant in Everett, WA, is the largest building in the world by volume. A tour guide told me maintenance costs on new 787 Dreamliners produced there are 30% lower than for earlier models. These planes are also expected to have a 30-yr. life (versus 20 for metal planes). Built mostly from carbon/polymer resin (lighter than aluminum, tougher than steel) Dreamliners consume 20% less fuel than earlier Boeing planes. Maintenance on these technological marvels also requires expertise in repairing composite structures.

Ships: On the Hawaiian cruise ship “Pride of America,” I discussed maintenance and operations with the vessel’s chief engineer. Manned by a 927-member crew, this 81,000-ton, 921-ft., ship runs with 25-MW propulsion power and 50-MW auxiliary power. (Its maximum speed of 27.6 mph is fast enough to water ski). Typical maintenance activities include corrosion repair; cleaning drains, air ducts, and chiller and boiler tubes; venting engine fumes; and conducting on-board monitoring. The 54-person engineering staff is “hands on” and also does maintenance. Big maintenance is performed in port. Conditioned-based maintenance is often outsourced.  Spare parts can be a particular challenge, since the ship is usually moving from place to place.

Much goes into keeping cars, trains, planes, and ships moving. Next time you travel by any of these modes of transportation, think about what’s being done to ensure your reliable and safe journey. MT

Based in Knoxville, Klaus M. Blache is director of the Reliability & Maintainability Center at the Univ. of Tennessee, and a research professor in the College of Engineering. Contact him at kblache@utk.edu.

Navigation