Archive | Preventive Maintenance

42

6:01 pm
June 16, 2017
Print Friendly

Understand the Danger: Pitting Corrosion

1706rmcasset

Tiny, sometimes nearly invisible pits, such as these, are indicative of potentially deadly pitting corrosion.

Pitting corrosion is a localized breakdown of metal manifesting in small cavities or “pits” visible on a metal surface. The damage that these tiny, sometimes nearly invisible, pits cause can be deadly.

Case in point: Pitting corrosion is believed to be the cause of the 1967 collapse of the U.S. Highway 35 bridge between Point Pleasant, WV, and Kanauga, OH. Forty-six people died when that structure suddenly fell into the Ohio River. Investigators determined the cause of this disaster had begun decades earlier with a small crack that formed during the casting of the bridge’s I-beams. The I-bar subsequently broke under the compounding stresses of a corrosive environment and newer, heavier vehicles crossing the bridge.

According to Michael Harkin, an NACE and SSPC coating inspector and president of FEO Inc. (feoinc.com, Virginia Beach, VA), understanding how to prevent pitting corrosion goes a long way to ensuring long, safe, and useful service for metal assets exposed to the elements. He offers the following insight into the problem and approaches for combating it.

— Jane Alexander, Managing Editor 

There’s more to the pits indicative of a pitting corrosion attack than meets the eye. Far more damage is done beneath the metal surface because the corrosion bores inward. Pitting corrosion causes the loss of metal thickness, translating to a loss of structural integrity that can lead to stress cracking due to metal fatigue.

For example, if a beam that bears a heavy load loses thickness and mass due to corrosion, there’s less beam available to support the weight. The attack could go unnoticed but, over time, the metal fatigue it causes could lead to formation of cracks. Cracks can quickly lead to beam failure and set off a catastrophic chain reaction as unplanned stresses multiply.

randmHow it starts

There are several causes of pitting corrosion, including:

• localized mechanical or chemical damage to a metal’s protective oxide film
• improper application of corrosion-control products
• presence of non-metal materials on the surface of a metal.

When metals aren’t properly treated and freely exposed to the elements, chemical reactions between them and the environment form compounds such as ferrous oxide, more commonly known as rust.

Prevention steps

Preventing pitting corrosion starts early, beginning with the choice of the right metal during the design of an asset. The risk of pitting corrosion is greatly reduced when users know ahead of time how materials react in different environments. Higher-alloy metals resist corrosion more strongly than low-alloy materials.

Next, to the extent that it’s possible, control the operating environment. For indoor or sheltered assets, keeping environmental factors such as temperature, pH, and chloride concentration in check minimizes the risk of pitting corrosion.

Finally, apply the proper industrial coating to your assets and have them inspected with non-destructive testing (NDT) methods. MT

Notes on Non-Destructive Testing (NDT)

According FEO’s Michael Harkin, non-destructive testing is the only legitimate option for inspecting coatings systems that are already in service (and intended to be kept in service). NDT is a subset of non-invasive procedures that don’t compromise the integrity of a tested system or material. As applied to coatings, these procedures can include using electromagnetic waves to gauge the thickness of a coating, infrared thermography to measure heat distribution and determine how well a coating is binding to its substrate, or lasers to measure surface profile without physically contacting the substrate.

FEO Inc., Virginia Beach, VA, is a QP5-certified coating inspection and consulting company. For more information, visit feoinc.com.

152

8:30 pm
June 15, 2017
Print Friendly

AZ Puts Proactive in Reliability

Biopharmaceutical manufacturing company AstraZeneca redefines reliability to streamline more-effective maintenance processes.

1706fprofile05p.jpeg

By Michelle Segrest, Contributing Editor

Even though the AstraZeneca manufacturing facility in Mt. Vernon, IN, looks like a hospital surgical unit—with key equipment separated into concentrated clean rooms—for years it operated like an emergency room. When an equipment breakdown occurred, personnel jumped into action, triaging the issue and not always looking into the true symptoms to prevent future occurrences.

At AstraZeneca, separating the reliability people from the day-to-day commotion, defining the difference between reliability and maintenance, and management support were keys to a successful transition to a reliability-oriented operation. Photo: AstraZeneca

At AstraZeneca, separating the reliability people from the day-to-day commotion, defining the difference between reliability and maintenance, and management support were keys to a successful transition to a reliability-oriented operation. Photo: AstraZeneca

The company acquired the Mt. Vernon facility in August 2015. With a new reliability unit in place and an Operations Excellence Team, the site now has teams focused on preventing emergencies, instead of addressing them.

Reliability and maintenance can be a challenge when maintaining a high standard for the pharmaceutical environment. As you walk through the facility, the white walls and floors glisten against the shiny, almost mirror-like, stainless-steel equipment. Equipment and personnel rooms serve as airlocks between the corridors and the manufacturing rooms. The airlocks are guards against dust, dander, allergens, or other elements that could contaminate the critical medicine that is being manufactured. The switch from a reactive to a proactive, risk-based, approach has taken reliability in the 700,000-sq.-ft. manufacturing area to a new level.

“Our first step was to separate our reliability team from the day-to-day commotion,” explained facilities engineer Andrew Carpenter. “We had to be sure they understood that reliability is different than maintenance, and we had to all take this seriously. We had many people who were specialists and were relied upon for troubleshooting and fixing emergency issues. It was a complete mindset change.”

The new reliability team received support from upper management and buy-in from the team. Although some roles changed, the team remained headcount neutral. This, along with clear alignment of goals, became the keys to a successful transition.

“If you are starting a reliability program in your plant, call it what it is,” senior building and reliability manager Chris Nolan said. “Reliability is different than maintenance. The goal is to get to a certain utopia. As your group grows, you all become more focused on that reliability side, but when you are starting out with a reactive-maintenance program, and you want to transition to one that is reliability based, there is a different vision. This must be explained and understood.  Now we have processes in place to aid in the prevention of emergencies and more organized efforts to quickly respond should the need arise.”

With an investment in new tools and technology, including additional vibration, infrared thermography, and ultrasound training, the newly structured, two-year-old team measures its return on investment in high-quality performance and products.

“A key driver within our business is quality,” Nolan said.

AstraZeneca is a science-led, biopharmaceutical business that discovers, develops, manufactures, and supplies innovative medicines for millions worldwide—primarily in the areas of respiratory, cardiovascular and metabolic, and oncology. The Mt. Vernon site manufactures oral-solids medicines—primarily for Type 2 diabetes treatment.

The maintenance and reliability group focuses on maintaining the utilities, purified water, HVAC, manufacturing equipment, and all Good Manufacturing Practice (GMP) maintenance.

Maintenance technician Dan Guth concentrates on a detailed work request in the maintenance shop.

Maintenance technician Dan Guth concentrates on a detailed work request in the maintenance shop.

A new process

The Mt. Vernon-site reliability team adopted a common mission statement from the industry. “Anyone who improves a process or a piece of equipment is a reliability leader.”

The simple vision was broken down into specific goals and targets. Nolan explained that 2015 was all about building a foundation, while 2016 was the year to focus on root-cause analysis. The team received early help from consultant group Life Cycle Engineering (LCE, Charleston, SC, LCE.com).

“In pharma, when somebody uses the word ‘criticality’ they go straight to quality,” Nolan said. “LCE helped us identify the tools we needed to show overall criticality—business cost, quality, mean time between failure. Andrew [Carpenter] led us through a criticality assessment at our site and we banked that into different categories, including equipment, water purification, parts redundancy, and packaging items. Now we do an assessment and re-rank our critical categories that need attention every year. We are in the process of doing that now. This helps us focus our efforts and has become a game-changer for us.”

The reliability group became its own entity within the plant’s maintenance organization.

“We were doing a really good job of fixing issues, but needed to work on following up after the issue, getting to the root cause, and putting processes in place to prevent the issue from happening again,” Carpenter said.

Two years in, Carpenter and Nolan are beginning to see the fruits of the team’s labor. “We can see that it is working and we have come a long way.”

Maintaining the reverse-osmosis purified- water-generation system at the AstraZeneca plant is critical to ongoing production.

Maintaining the reverse-osmosis purified- water-generation system at the AstraZeneca plant is critical to ongoing production.

Early wins

Redefining the maintenance and reliability functions was an anchor in achieving some early wins for the new team.

“We are all here to get the product out of the door, but the difference is simply the things we focus on,” Nolan said. “Maintenance right now focuses on the day-to-day activities—the preventive maintenance piece and execution of that at a high level. But when you are executing you are challenged on the day-to-day things, so it is hard to find that balance of time to take a look back on the long-term items, like the vision. For us, the difference between maintenance and reliability is that reliability is getting into the data mining of the maintenance activities. Particularly in the pharma environment, that is a big piece that ties back to the quality culture, as well. The maintenance piece is very tactical, while reliability centers around more planning and vision.”

Carpenter said the team’s vision began to take shape when it zoomed in on the root-cause analysis program. About six months into the program’s launch, Nolan began to notice a distinct change in the culture.

“It was a Friday afternoon before a three-day holiday weekend and normally everybody was ready to scoot,” he said. “We had one of our metrology calibration technicians and engineering technicians having a serious conversation about a particular problem. It turned into an hour-and-a-half discussion of digging into really finding the problem, turning it into a root-cause analysis. That is the first time when I really thought this whole program began to click. These guys were looking beyond the fix and they were passionate about preventing it from happening again.”

Andrew Carpenter, Neil Reichel, Chris Nolan, and author Michelle Segrest (l-r), discuss reliability and maintenance operations in the AstraZeneca maintenance shop.

Andrew Carpenter, Neil Reichel, Chris Nolan, and author Michelle Segrest (l-r), discuss reliability and maintenance operations in the AstraZeneca maintenance shop.

Carpenter explained that the change involved a clear switch from simply fixing a problem to a focus on the big picture. “We are better at documenting the data and finding ways to prevent failures,” he said.

One of the areas the team focused on heavily at the start of the reliability program was predictive maintenance. Engineering technicians and predictive-maintenance technicians were sent to Level I vibration, infrared, ultrasound, and laser-alignment training. It didn’t take long to see the return on investment.

Nolan said another key win was bringing the storeroom into the reliability discussion.

“The storeroom is a key to reliability,” Nolan said. “Paying attention to what is going on in the storeroom tells you what is going on in the plant. What goes out of your storeroom is a huge check and balance of your maintenance process.”

Realizing how much can be learned from problems and mistakes also made a big difference.

“Problems are gold,” Nolan said. “Problems within your processes give you ‘aha’ moments. This allows you to bring people together to look at what is going on and talk about how can it be better. Don’t ever be afraid to share a problem because usually it can positively impact you, your group, or someone else.” MT

Michelle Segrest is president of Navigate Content Inc., and has been a professional journalist for 28 years. She specializes in the industrial processing industries and has toured manufacturing facilities in 41 cities in six countries on three continents. If your facility has an interesting maintenance and/or reliability story to tell, please contact her at michelle@navigatecontent.com.

24

7:45 pm
June 15, 2017
Print Friendly

Musings on Maintenance And Mobility

klausblacheBy Dr. Klaus M. Blache, Univ. of Tennessee, Reliability & Maintainability Center

What we do and how we do it have changed dramatically with regard to maintenance and its impact on reliability. Gone are the days when you could easily repair most things on your car and perform regular maintenance. Today, it’s all about computer sensors, algorithms, and data historians. As a result, in most cases, we take for granted that our transportation modes are adequately maintained and reliable. Let’s look at some snippets of what’s going in areas of reliability and maintenance (R&M) on cars, trains, planes, and ships.

Cars: Tesla’s plant in Fremont, CA (tesla.com, Palo Alto) is now the most advanced and talked about automotive factory in the world. The site was the former home of New United Motor Manufacturing Inc. (NUMMI), a joint venture of General Motors and Toyota (1984 to 2010). Based on my scan of recent Tesla job postings, maintenance technicians in Powertrain are expected to perform at a Journeyman Level on all machines in the assigned area and be responsible for preventive maintenance, troubleshooting/repair, clean lines, and escalation of assigned equipment. Individuals in these roles must be willing to tackle whatever maintenance challenge arises and to assist and learn from others in their areas of expertise. A sampling of the posted jobs seems to highlight the company’s interest in worker flexibility and high levels of employee engagement. This doesn’t mean maintenance technicians are expected to have all the answers regarding plant culture. Installing and sustaining an autonomous workforce may be more difficult than building autonomous vehicles.

Advances in technologies, approaches, and methods are helping to keep our various modes of transportation moving, as well as ensuring that they are reliable and safe.

Advances in technologies, approaches, and methods are helping to keep our various modes of transportation moving, as well as ensuring that they are reliable and safe.

Trains: Railways are considering using drones to help with security, initial track inspections, and predictive maintenance. Some already leverage them for safe, economical checking of switch-point heating systems. Other advanced-technology approaches include the use of: wheel-temperature detectors (infrared) to check brakes, wheel-profile monitors (lasers and optics) to assess wheel wear, and acoustic-detector systems (acoustic signatures) to identify wheel-bearing failure. Deutsche Bahn (DB) and Siemens are piloting predictive analytics to avoid failures and make vehicle maintenance recommendations. All diagnostic data is ultimately made available to maintenance personnel.

Planes: The 472 million-cubic-sq.-ft. Boeing aircraft plant in Everett, WA, is the largest building in the world by volume. A tour guide told me maintenance costs on new 787 Dreamliners produced there are 30% lower than for earlier models. These planes are also expected to have a 30-yr. life (versus 20 for metal planes). Built mostly from carbon/polymer resin (lighter than aluminum, tougher than steel) Dreamliners consume 20% less fuel than earlier Boeing planes. Maintenance on these technological marvels also requires expertise in repairing composite structures.

Ships: On the Hawaiian cruise ship “Pride of America,” I discussed maintenance and operations with the vessel’s chief engineer. Manned by a 927-member crew, this 81,000-ton, 921-ft., ship runs with 25-MW propulsion power and 50-MW auxiliary power. (Its maximum speed of 27.6 mph is fast enough to water ski). Typical maintenance activities include corrosion repair; cleaning drains, air ducts, and chiller and boiler tubes; venting engine fumes; and conducting on-board monitoring. The 54-person engineering staff is “hands on” and also does maintenance. Big maintenance is performed in port. Conditioned-based maintenance is often outsourced.  Spare parts can be a particular challenge, since the ship is usually moving from place to place.

Much goes into keeping cars, trains, planes, and ships moving. Next time you travel by any of these modes of transportation, think about what’s being done to ensure your reliable and safe journey. MT

Based in Knoxville, Klaus M. Blache is director of the Reliability & Maintainability Center at the Univ. of Tennessee, and a research professor in the College of Engineering. Contact him at kblache@utk.edu.

33

4:15 pm
May 15, 2017
Print Friendly

Remote Monitoring Empowers Solar Contractor

Solar-power systems that take the sting out of energy costs are effectively monitored with a state-of-the-art tool and cloud-based data system.

1705fsolfocus01p

The NuEra Energy Designs company in Newport Beach, CA, specializes in designing, installing, and monitoring solar-powered systems. Remote monitoring is handled by the Fluke 3540 FC monitor and Fluke Connect cloud-based data-analysis system.

NuEra Energy Designs is a Newport Beach, CA-based contracting firm that works with industrial and commercial businesses to improve their energy efficiency and to find ways to save money, typically by designing and installing solar systems and associated electrical equipment.

NuEra’s work starts with load studies and extensive evaluation of building-power systems and equipment. If appropriate, solar solutions and backup and demand-control systems are designed and built based on those studies.

A key selling point of NuEra services to customers is a welcome,  often near-immediate return on investment as a result of reduced energy bills, depreciation, and the potential to obtain energy and tax credits. In some cases, installation of solar systems and electrical upgrades delivers net revenue to clients who are then able to put power back into the energy grid.

Contractor, problem solver

Ken Dodds, the company owner and chief energy analyst, has established himself over the years as an electronics and electricity problem solver. He became a California-licensed contractor in the 1970s. His early projects were delivering power to remote ranches and other installations in the Mojave Desert, where it can be cost prohibitive to run conventional electrical lines. He has designed and built portable and off-grid solar systems to operate well pumps, power ranch homes, and illuminate street lights on remote military bases, complete with battery or multi-generator backup systems.

Though he started NuEra in Arizona more than six years ago, Dodds does the bulk of his business in California where the high cost of power helps makes solar systems a legitimate option for commercial customers. Add in energy savings through lighting, HVAC, and other electrical upgrades and the cost savings become substantial.

“One manufacturing-facility customer went from paying what would be $23,000 per year at today’s rates for energy (their old rate was a bit less), to getting $90 in return from the utility less than two years later,” Dodds stated.

The Fluke 3540 FC monitor provides real-time data capture.

The Fluke 3540 FC monitor provides real-time data capture.

Monitoring and documenting

To efficiently document studies and identify such savings, Dodds uses the Fluke 3540 FC three-phase power monitor (Fluke Corp., Everett, WA, fluke.com) to track three-phase systems at his client’s plants. The monitor takes power analysis and logging to a new level by putting the data stream onto data servers. Dodds is then able to remotely read and analyze these power measurements, depending on the configuration:

• current (A)
• voltage (V)
• frequency (Hz)
• power (W)
• apparent power (VA)
• non-active power (var)
• power factor (PF)
• total harmonic distortion voltage (%)
• total harmonic distortion current (%)
• harmonic content current (A).

The information is streamed from the Fluke 3540 FC to secure cloud servers where the measurements can be analyzed with the Fluke Connect mobile app or Fluke Condition Monitoring desktop software. Graphs show trends and fluctuations during the monitoring period. Dodds sets up alarms to indicate when the power is outside certain thresholds.

Monitoring the data gives Dodds a signature of the building, from the main feeders and on into critical pieces of equipment. “First, it lets us know where best to attack the building to make changes, or see if we can fix something upfront,” he said. “We look at kilowatts, we monitor the voltage, we look at use times. We can tell if the loading is off on different legs of the three phase, important because if it’s not uniform, you’re going to have issues.”

NuEra's Ken Dodds uses the Fluke 3540 FC three-phase power monitor to track three-phase systems at his client’s plants. The monitor sends the data stream to cloud-based servers for analysis.

NuEra’s Ken Dodds uses the Fluke 3540 FC three-phase power monitor to track three-phase systems at his client’s plants. The monitor sends the data stream to cloud-based servers for analysis.

Easily shared, reliable data

The data is useful to a wide range of workers. “The power-monitoring system not only educates our electricians to a problem,” Dodds stated. “If I’m worried about a motor or another big expensive piece of equipment, I can see trend graphs on what’s happening with the machine on my tablet or phone.”

Dodds connected a Fluke 3540 FC at one manufacturing plant recently so he could watch, in real time, the power going into the building, as well as the power going back to the grid from the solar system. “This is really valuable to me, especially for knowing what happened to the power I sent back to the utility. That is what they are paying my customer for so it’s verifying that,” he explained. “If my data shows I’m sending 15 kilowatts and the utility only shows 5 kilowatts, I can question that and we can figure what’s going on.”

Recently, the system allowed him to identify energy waste. “I discovered the other day a compressor was kicking on in the middle of the night. I called the building supervisor to see if anyone was working at that time. He said no, so we knew having the compressor on was a waste of money. You are paying for air to go leak around the plant. So these are some of the types of savings we find.”

The 3540 also provides power-factor data, a measure of real and apparent power, which can be a reason for the demand charges being high. “The convenience of monitoring energy consumption from anywhere is huge,” Dodds said. “I can use it in the car, when I’m on a roof or in the office or at the coffee shop or at home, wherever. My phone goes whoop whoop, when an alarm goes off. I check and I know what an asset is doing. It only takes a second to look at and read it. From anywhere, you can answer a text or send an e-mail. It’s exciting to see it develop.” MT

For more about the Fluke 3540 FC monitor, supporting software, and cloud-based data handling, visit fluke.com.

500

2:22 pm
May 15, 2017
Print Friendly

Facilities vs. Factory Maintenance: Is There a Difference?

1705ffacilitymain

The common denominators boil down to assurance of reliable equipment assets and successful delivery of product.

By Jeffrey S. Nevenhoven, Life Cycle Engineering (LCE)

Among reliability and maintenance (R&M) professionals, there are many opinions about the universal or, more precisely, not-so-universal nature of maintenance practices. We’ve all heard statements along the lines of “this organization is different,” “we’re not like them,” or “those best practices won’t work or fit here.” One perception shared by many working in the R&M trenches is that maintenance in a batch-processing manufacturing environment is considerably different from maintenance in a continuous-flow operation. Another common perception is that maintenance principles and practices within the world of non-manufacturing facilities differ greatly from those in a manufacturing organization. But do they really?

At first glance, those strongly held beliefs might seem justifiable. Below the surface, however, the inner workings of any organization are quite similar when it comes to R&M requirements. Why, then, do so many people contend that reliability and maintenance are handled differently within distinct organization types? A number of factors drive those beliefs, including operating environment, regulatory requirements, organizational structure, leadership style, business priorities, expectations, and past practice. On top of that, many influences figure into the perception that something will or will not work within a specific organization.

In reality, physical assets are void of emotion and thought. Regardless of location or organization type, such assets need to be operated and maintained appropriately and, in turn, be available to deliver reliable service, as required. Without reliability, business risks increase, asset-performance levels decrease, and costs escalate.

So different, but so similar

Assets, systems, procedures, departments, and workers exist to produce a product or service, regardless of organization type. In the healthcare sector, the product is patient experience. Within amusement, entertainment, and sports markets, it is fan/customer experience. Within the travel industry, it’s passenger experience. Within the education system, the deliverable is student experience. And, within manufacturing, the product is ultimately consumer experience.

Consider, for example, two starkly different environments: a healthcare operation and a refinery. On the exterior, a healthcare organization, such as a hospital, looks very different from an oil-and-gas refinery. Hospitals consist, primarily, of aesthetically appealing buildings and grounds while oil refineries consist of tanks, piping, and other industrial-looking structures. As we enter these operations, noticeable differences still exist.

Inside the hospital, we observe doctors, nurses, patients, and other healthcare professionals at work. At the refinery, we see operators, crafts, engineers, and other industry specialists performing their duties. One facility encompasses exam, emergency, and operating rooms, labs, registration desks, and waiting areas, while the other encompasses control rooms, repair facilities, material storage areas, and production equipment and environments.

Once we look beyond the exterior differences, though, similarities become more noticeable. Despite one organization focusing on patient health and the other on refining crude oil, both share a long list of common business practices, have comparable organizational structures, and utilize physical assets. Both are delivering a product, and both require reliable, well-maintained equipment to do it.

Healthcare operations, such as hospitals, fall under the category of facilities maintenance, or facility management, while refineries in the oil-and-gas industry fall under the factory-maintenance category. Despite the differences in form, fit, and function, these operations are very much alike when it comes to sustaining maintenance requirements. After all, the maintenance processes and practices to ensure that the HVAC system in a hospital is operational and reliable are similar to the efforts required to ensure the reliability and operation of a refinery’s cooling system.

The HVAC system in a hospital’s operating room requires the utmost care and reliability. Temperatures and airflow must be regulated within specific parameters throughout the entire surgical procedure to help prevent infection and promote healing of a patient. If the HVAC system is not working reliably, entire operating suites can be shut down, resulting in canceled surgeries, reallocation of patients to other hospitals, and even possible litigation and damage to reputation.

The process of refining crude oil into consumer fuels and other products entails several chemical-process steps that generate enormous amounts of heat and pressure. The cooling-water system, which is associated with a cooling tower, helps control these extreme temperatures and pressures by transferring heat from hot process fluids to the cooling system. Much like the HVAC system, the cooling tower is a critical asset that requires reliable operation. Unless it performs reliably, product delivery, product quality, energy consumption, the environment, and employee safety can be severely compromised.

Have the parallels between these different types of organizations become clearer?

Maintenance 101

A hospital HVAC system and a refinery cooling tower incorporate mechanical, electronic-control, transmission, and power systems, all of which need to be maintained properly. To achieve this, facility-maintenance departments and their factory-maintenance counterparts need to ensure that the following foundational methods are established and functioning well. Think of these methods as “focusing on the fundamentals” or “the blocking and tackling” of maintenance:

Asset-care program. Most assets within any organization require some level of preventive care. This includes routine cleaning, lubrication, inspection, and adjustment to maintain reliable operation which invariably includes time-based and condition-based maintenance. This should all be documented and monitored through the maintenance strategy program.

Work-management system. The work-management system encompasses the framework, infrastructure, processes, and resources needed to manage asset-care activities, reactive or proactive. It provides the means to identify, prioritize, perform, document, and report work.

Planning and scheduling function. The planning and scheduling function defines the what, how, who, and when for proactive-maintenance work activities. The collective effort of planning and scheduling aims to minimize asset downtime, improve workforce efficiency and, reduce maintenance-induced failures.

Stores (MRO) inventory-management function. To effectively fulfill its mission, the maintenance function requires reliable and prompt material support. A proficiently managed MRO (maintenance, repair, and operations) inventory storeroom contributes to improved equipment reliability, workforce efficiency, and cost control.

Reliability engineering. The reliability engineering function is responsible for driving out sources of repetitive failure. Its mission is to provide leadership and technical expertise required to achieve and sustain optimum reliability, maintainability, useful life, and life-cycle cost for an organization’s assets.

Computerized maintenance-management system (CMMS). Proactive-maintenance organizations use data to effectively handle work activities, report performance, track costs, and enable continuous improvement efforts. The CMMS automates these processes, captures data, and provides information required to enable resource productivity and asset reliability.

Universal application

Regardless of where an asset resides, reliability depends on core reliability and maintenance fundamentals that span all industries and organizational types. Whatever the assets may be, i.e., motors, pumps, compressors, robots, conveyors, boilers, elevators, escalators, pelletizers, utilities, mobile equipment, fire-suppression systems, rotary-tablet presses, chillers, rolling mills, roadways, buildings, you name it, all require specific amounts of downtime for proactive preventive- and predictive-maintenance activities, including, but not limited to, replacement of wear parts, rebuilds, upgrades, and other improvements. Levels of maintenance may vary by organization type, but the fundamental requirement for it is universal. MT

A senior consultant with Life Cycle Engineering, Charleston, SC, Jeff Nevenhoven helps clients align organizational systems, structures, and leadership styles with business goals. Contact him at jnevenhoven@LCE.com.


learnmore2“Alignment Connects Individuals to Organization Objectives”

“Managing Your Value Stream”

“Get to the Root of the Cause”

“Profiles Reveal Reliability Trends”

120

2:55 pm
April 18, 2017
Print Friendly

On The Floor: Management Rapport? Thumbs Up and Down

Mechanical and electrical plant roomsBy Jane Alexander, Managing Editor

For some reason, the following question about management rapport really kicked MT Reader Panelists into high gear this month. Lots of them (more than usual) wanted to express their opinions (some in far more detail than they typically provide). The result is that we can’t include all responses on these two pages. 

Q: What was the state of rapport between their sites’ plant-floor reliability and/or maintenance teams (or their clients’/customers’ teams) and upper management, and why?

Here are a few of the responses we received. As usual, they’ve been edited for clarity and brevity.

Industry Consultant, West…
Management rapport [with maintenance and reliability teams] is one of the main indicators I use when working at a new [client] site. If there’s tension between these departments, there will be communication breakdowns—virtually every time.  Performance will suffer greatly, and each group will blame the others.

In general, I find a good, strong, open, and honest working relationship in less than 30% of my clients’ operations.  If I can resolve issues between the groups, and improve relationships, the parts of the maintenance and reliability puzzle fall into place rather easily. In the age of e-mail, texting, and voicemail, however, it’s much easier for silos to exist and not handle issues face-to-face.  In my opinion, it seems to be getting easier to let site relationships erode rather than repair them.

Maintenance Technician, Discrete Mfg, North America…
Not the greatest here (always a struggle because upper management is constantly looking to cut corners). They call it risk management, yet when something goes wrong, they panic. Some of our older equipment has been paid for many times over. Now, though, we’re into a stage where it’s hard to get parts for this equipment. We [our team] really tries to stress the importance of preventive maintenance (PMs) and taking care of things, as in “if you take care of your stuff, your stuff will take care of you.” But it becomes frustrating when that idea seems to fall on deaf ears and they [management] seem to dodge another bullet. (This opinion is based on personal experience; I’ve been working in this plant for many years.)

Industry Supplier, Southeast…
With regard to my customers, management rapport, in most cases, is still not very good. I work with a lot of plants where plant-floor staff need help, but must get upper management to buy in. Most preventive-maintenance (PM) personnel don’t have the knowledge to make their case. When I’m able to meet with both sides at the table and pitch ROI (return on investment), it seems that they begin to understand each other better, i.e., that the ROI for Management is dollars and the ROI of PM teams is reduced failures and workload.

Reliability Specialist, Power Sector, Midwest…
Our team has an excellent rapport with all levels of the organization.  The secret to good rapport is to not only talk the talk, but to walk the talk. The site’s PdM/PM program mission is to use our knowledge and appropriate technologies on the facility’s assets to provide the operating group safe, efficient, and reliable equipment.  In the same manner, we are to use our knowledge and available technologies to safely and effectively reduce the facility’s operating and maintenance costs.

Industry Supplier, Midwest…
It’s ugly (management rapport, that is)! Many of my plant-floor customers have lost budgets and been reduced to performing reactive work, as opposed to proactive maintenance. They’re dealing with plants that are already in bad shape and disrepair, and answering to management that still wants to run full production. They have no inventories, no spares, and no orders for items with extremely long lead times. It’s not a pretty picture. One ray of hope [a slight improvement] is that site management is now being forced to go to corporate for monies and also discuss why equipment was allowed to go so long without repair. The overall situation, though, leads to pain and agony for those having to do work, that, if it had been done when needed, would have been a simple fix, not a catastrophic fix.  

Industry Consultant, North America…
There’s no guarantee that upper management has a solid understanding of reliability excellence. This is especially true if no executive-level stakeholder exists. Quite often, the focus from the top is solely on cost management (not on failure prevention or defect elimination.) In my experience as a consultant, a common complaint at the working level has focused on incoherent, ongoing initiatives that aren’t solidly linked to goals. This issue could be resolved if long-range plans were created based, say, on ranking of each initiative by priority and benefit and then stretching them out over a period of time. Leadership should encourage these types of plans for excellence, and involve plant personnel in their definition.

Maintenance Leader, Discrete Mfg, Midwest…
As noted in some of my past Reader Panel responses, maintenance used to be the redheaded stepchild at our facility. The problem started with the fact that plant managers and senior managers seemed to come and go [change] frequently. Because of this, “flavor of the month” programs were the norm. This changed with the arrival of an outside consulting firm. When upper management listened to suggestions and our plant-floor personnel saw that their ideas were listened to, maintenance took ownership. This made a big difference with proactive versus reactive work. We’re now getting our preventive maintenance work done as well. Things are looking good.

Reliability Engineering Leader, Process Mfg, South…
If I had been asked this question a couple of years ago, I would have characterized the relationship between management and plant-floor teams as indifferent. It wasn’t adversarial, but more a matter of management viewing maintenance as a necessary evil than a competitive advantage.  That has changed significantly. Last year, leadership announced PM Completion Rate (with a target of 95%) as one of the top metrics for the company. That was a real game changer. Suddenly, everybody was interested in preventive maintenance—it had become part of their personal-performance expectations. Respect for the importance of scheduled maintenance compliance made a dramatic shift, and we exceeded our PM-completion target.  This coming year, unscheduled asset downtime is being added to the top company metrics and will be reviewed on a monthly basis by executive management. This is a clear example of how leadership from the top can really drive change. 

Industry Consultant, International
In answer to your question, this situation [management rapport problems] is brought on by local company politics, lack of training, and basic mismanagement among, other things.

While I’ve worked with various clients, including some where severe adversarial relationships existed between Maintenance and Production/ Upper Management, by coaching ALL responsible parties that state of the art reliability and maintenance saves money, increases OEE (overall equipment effectiveness), improves uptime, and increases productivity, etc. I have convinced maintenance and top management that maintenance/reliability is a business partner NOT a “ we break it/you fix it” stepchild.

After training of top-level maintenance, production and sometimes even general management personnel by professionals in reliability and maintenance management, common goals are identified and cooperation is much improved. Accountants watch the bottom line weighing these additional consultant/training costs against expense reductions and production improvements. Results are that teamwork builds and floor-operations to staff-level relationships smooth out.

“Equipment Ownership,” in selected cases, brings hourly production and maintenance crafts together and reinforces the hourly–personnel through management relationship. Although this has, at times raised, the eyebrows of union officers, they usually go along when the benefits to all are obvious.

Yes, I have seen too many operations where maintenance and production departments, which usually have the ear of top management, DO NOT have a smooth relationship. However, with the proper training and education of all concerned, this can usually be much improve to the economic and management benefit of all.

Plant Engineer, Institutional Facilities, Midwest
With regard to management rapport, for several months, maintenance (trades) forepersons at our institution have had to attend not only new-construction meetings, but even small-project meetings. The idea is that we (Maintenance) can add our concerns before, during, and after projects are completed. The problem with all this is how much time it takes. With so many projects and associated meetings [at our site] and the number of normal maintenance-type meetings we have, we almost always have at least one supervisor sitting in meetings 30 to 40 hours per week. Work for anybody attending these meetings gets pushed back and can delay repairs. It also creates more work for the people not attending.

Another problem we have is that only the person attending the meeting knows what was discussed and/or is coming up. Consequently, that individual has knowledge that other supervisors don’t. The system would work a lot better if one person could attend all the meetings and email a recap of each event so every supervisor would know where each project stands and what’s coming up, whether in his or her area/zone or not.

While most meetings cover such a wide variety of subjects that only 10% to 20% of their agendas can be devoted to individual trades, attendees must listen to everything. It would be better, if you were going to have a one-hour meeting, to break it down into four parts, i.e., plumbing, electrical, mechanical, architectural/structural. This way, a supervisor could attend only the part of the meeting during which his or her area was discussed, not the entire meeting, and, if email recaps were sent out, could still keep up with everything that transpires.

Engineer, Industry Supplier, Southeast
Management’s responsibilities are meeting production deadlines and goals while keeping operating costs to a minimum. The relationship between management and maintenance depends on how management views their maintenance program. Some management personnel look at maintenance as a cost center while others recognize it as a cost savings mechanism or in best case, the profit center. Understanding that maintenance is a part of the cost of the product being created softens the financial burden but also gives management a better perspective regarding the value their maintenance teams bring to the table.

Ours is an equipment-service operation that’s deeply involved in working with our customers to improve their PdM programs. As such we continue to invest a great deal of time educating upper management regarding the benefits of early detection of issues that will lead to premature failures as well as on-going inefficiencies. The more informed management becomes about heading off potential problems, and the tools and preventive measures available, the more they become involved with their maintenance teams. Informed managers will interact with their teams quicker and to a greater extent. Sometimes comparing the benefits of outsourcing major PdM activities is more appealing and acceptable to management personnel as it leaves their operators and technicians time to complete their daily routine assignments.

Maintenance personnel generally understand the need for planned routine maintenance. Their relationship with upper management is greatly improved when their leaders are also informed. Education is the key to improving the relationship between upper management and their maintenance teams as well as a way of improving efficiency and operational success of the facility. MT

Tip of the Month

“Add RED and GREEN colors to the face of standard pressure gauges. This allows anyone who looks at or takes readings on a single gauge (or dozens) to tell right away if a pressure is too low or too high. I’ve worked on equipment and in test labs where this little addition could have saved a lot of time and money, and helped any operator.”

Tipster: Plant Engineer, Institutional Facilities, Midwest (an MT Reader Panelist)

What about you?
Tips and tricks that you use in your work could be value-added news to other reliability and maintenance pros. Let us help you share them. Email your favorites to MTTipster@maintenancetechnology.com. Who knows? You might see your submission(s) highlighted in this space at some point. (Anyone can play. You don’t need to be an
MT Reader Panelist.)

351

4:15 pm
April 13, 2017
Print Friendly

Reliability Changes Lives

Using skilled technicians and advanced technology, Eli Lilly and Company creates life-saving medicines and devices worldwide.

By Michelle Segrest, Contributing Editor

Throughout the halls of the Indianapolis Eli Lilly and Company facility, the corporation's brand is proudly displayed. All photos courtesy of Eli Lilly and Company.

Throughout the halls of the Indianapolis Eli Lilly and Company facility, the corporation’s brand is proudly displayed. All photos courtesy of Eli Lilly and Company.

At Eli Lilly, the motivation to improve production reliability is not just something that is tracked on graphs and charts for upper management to review. In fact, for maintenance and reliability engineer Carrie Krodel, it’s personal.

Krodel, who is responsible for maintenance strategies at the Eli Lilly Indianapolis facility’s division that handles Parenteral Device Assembly and Packaging (PDAP), has a family member who uses the company’s insulin. “I come to work every day to save his life,” she said. “Each and every one of us plays a part with reliability. Whether it’s the mechanics or the operators keeping the line running, the material movers supplying the lines with the products, or the people making the crucial quality checks, everyone is a part of it. And we all know that the work we are doing is changing lives.”

The Indianapolis site covers millions of square feet with nearly 600,000 assets that must be maintained. According to Rendela Wenzel, Eli Lilly’s global plant engineering, maintenance, and reliability champion, the company produces the medicine as well as the packaging for insulin pens, cancer treatments, and many other products and devices.

For the entire Eli Lilly team—which includes a group of about 80 engineers at the Indianapolis site—the responsibility is crucial. “If we mess up, someone gets hurt,” Wenzel said. “This is a big responsibility.”

However, it’s the human element of this responsibility that inspires an exceptional level of quality.

Team, tools, training

Screen Shot 2017-04-13 at 11.03.07 AMWayne Overbey, P.E., is the manager of the Maintenance-Manufacturing Engineering Services department. He said his team of seven maintenance technicians uses three primary technologies every day to keep the machines running—vibration analysis, oil analysis, and infrared technology. With a focus on condition-based monitoring, each team member has an area of responsibility to collect and analyze vibration data. In addition to the vibration data collector, each team member carries a small infrared camera to make heat-signature images used to diagnose and troubleshoot rotating-equipment problems.

The team also uses a digital microscope that can zoom to 3500X magnification. This helps them look closely at a bearing race, cage, and rolling elements and see what caused a failure, whether structural, corrosion-based, or failed lubrication. In addition, the group has an oil laboratory that can analyze oil and grease. 

The team performs more than 7,000 measurements on more than 4,000 rotating/reciprocating machines and performs vibration analysis on those machines monthly, Wenzel stated. The level of qualified individuals is high. “Anything that is process related, we have the equipment to look at it and analyze it,” she said. “We have people with ISO 18436-2 Cat 2 and Cat 3 verifications and even one expert with an ISO18436-2 Cat 4 certification, and there are fewer than 100 people globally with that level of certification. These guys are experienced, high-level certified professionals.”

The maintenance team increased its level of performance more than five years ago when it made the strategic decision to outsource the facilities (buildings and grounds) portion of maintenance. With about 220 maintenance professionals companywide at the Indianapolis facility, this allowed the team to focus more on production and analysis rather than the facilities, Overbey said.

The team has sophisticated data-collection routes set up as PMs and also focuses heavily on maintenance training.

“We have a difficult time finding people interested in maintenance,” Overbey said. “We have a strategic program to train people that takes 18 months to 2 years. When I was growing up, being an electrician or mechanic was a fine career, but now the attitude is that you have to have a college degree to be successful. Most of our crafts people here make more than the average liberal-arts major. As we cycle out the baby boomer work force, we need to find new talent and close the gap.”

Wenzel agreed that finding qualified crafts people has been a focus that has helped Eli Lilly in its drive for reliability.

“Wayne saw the need and developed an excellent program,” she said. “Management is supportive. He is training them and then sending them to get experience while they are going to school.”

The program is responsible for hiring 24 trainees, to date, and has been able to place 18 of them in full-time positions within Lilly maintenance groups. The remaining six trainees are still in the initial stage of the program. The training also uses basic maintenance programs provided by Motion Industries and Armstrong. Last year, there were more than 30 well-attended training classes focused on equipment used at Lilly. The company wants the training to be relevant to what the maintenance technicians perform on a daily basis.

“The whole condition-based platform makes us unique,” Wenzel said. “We have all the failure-analysis competencies. It’s a one-stop shop. We provide two-to-three day courses on condition-based technologies for crafts and engineers. The whole understanding, as far as what maintenance and reliability can do, is to increase wrench time and uptime. We are all seeing an uptake in technology.”

The Indianapolis Eli Lilly facility has more than 600,000 assets that must be maintained by its experienced engineering-services team.

The Indianapolis Eli Lilly facility has more than 600,000 assets that must be maintained by its experienced engineering-services team.

Best practices

Overbey stated that his main responsibility is to help the various site-maintenance groups improve uptime by using diagnostic tools to identify root causes of lingering problems. With a focus on training paying dividends, he said the high-quality people are what make the condition-based monitoring team successful.

The team works with the site-maintenance groups to reduce unexpected failures, so increased time can be focused on preventive maintenance. “We look at our asset-replacement value as a function of our total maintenance scheme,” Wenzel said. “We look at recapitalization and make sure we are reinvesting in our facility. We keep track of where we are with proactive maintenance. Those numbers are tracked facility to facility and then rolled into a global metric.”

Vibration analysis and using infrared technology has become a central part of the department’s reliability efforts.

“These guys have taken responsibility for the failure-analysis lab and taken it on as an added-value service,” Wenzel said. “For example, if there is a failed bearing, they take it out, cut it up, and provide a report that goes back to management. If we make a call that a piece of equipment has increased vibration levels and is on the path to failure, based on the vibration data collected, getting those bearings goes a long way in getting site buy-in when the actual bearing problem can be visually observed. Most individuals are skeptical when shown the vibration waveform (squiggly lines), seeing the bearing with the anomaly is the true test of obtaining their buy in.”

“We can compete with anyone in terms of oil analysis,” Wenzel added. “We can identify particles and have switched to synthetics. For example, when oil gets dirty, it becomes acidic. Something slightly acidic can be more harmful than something that is highly acidic because it will just continue to eat away at the material and cause significant damage before you can stop it. Something slightly acidic can really tear up bearings. The FluidScan 1100 can detect that.”

Screen Shot 2017-04-13 at 11.03.19 AM

More than 80% of the oil samples are now handled internally, Wenzel said. “As we are selling all of these capabilities to the PdM team around the world, we are starting to look at some of the potential issues at other facilities to provide extra analysis with this condition-based maintenance group,” she said. “We are sharing good ideas and processes across facilities. We now have a maintenance and reliability community.”

Eli Lilly employs Good Manufacturing Practices (GMP) and the use of many chemicals requires a high level of cleanliness that is checked daily and regulated by government bodies.

Changeovers can often take weeks. “We check everything,” Wenzel said. “There is very involved and stringent criteria for how we clean a building. Regulations are a challenge, but they keep you on your toes. You don’t even notice it anymore because it becomes a part of what you do. It doesn’t faze the day-to-day thinking.”

The precision and accuracy of the facility's manufacturing equipment contributes to its product excellence.

The precision and accuracy of the facility’s manufacturing equipment contributes to its product excellence.

Operational excellence

Eli Lilly works with cross-functional teams in which maintenance, engineering, and operations are working on the overall process. Operations manager Jason Miller is responsible for running the process. Maintenance corrects the issues and performs preventive maintenance to get ahead of equipment failures and prevent unplanned downtime.

“Anytime we have an equipment failure we evaluate what happened and see what process we can put in place to get ahead of those things,” Miller said. “Line mechanics are on each shift and work with our line operators to understand and troubleshoot issues. We get ahead of issues to ensure [there is] no impact to the quality of our process.

With advanced robotics and a large amount of automation, monitoring performance and quality is key to successful operation and production, Miller stated. “Everything is captured, including downtime and rejects,” he explained. “We identify corrective actions at every morning meeting. We use the data on the line to drive improvement. The line is automated, but if there is a reject every 100 cycles, we need to take action. The robotics never stop. If you see overloads or rejects over time, this tells you about mechanical wear and other issues with the equipment. We drive data-driven decisions for maintenance.”

The preventive maintenance includes lubricating linear slides each month. When vibration is detected, adjustments are made immediately. “The machines tell us what’s going on. We just have to know how to read them,” Miller said. “We have manual and visual quality checks, but the machines also do quality checks. Reliability is critical because when patients are waiting on their medicine, the machines have to run the way they are supposed to run all the time. We have standards, and they have to be precise. This is medicine going into someone’s body. We are the last step of the process. It has to be packaged and labeled correctly, as well.”

Mike Campbell is the maintenance planner and scheduler for PDAP and has developed a system in which all preventive maintenance is performed during scheduled shutdowns.

“We develop a schedule with every piece of equipment and every scheduled PM associated with it,” Campbell said. “One line may have 50 to 60 PM work orders to perform during the week of the scheduled line shutdown. We bring in a lot of resources to do it all at once, typically requiring a day shift and a night shift.”

Advanced production technology is critical to the standard of reliability excellence.

Advanced production technology is critical to the standard of reliability excellence.

Changing lives with reliability

Wenzel said that looking at how each department interacts helps to put all the pieces of the reliability puzzle together. They have even received outside recognition of their practices in Indianapolis. In 2008, The Corporate Lubrication Technical Committee, of which Wenzel is the chair, won the ICML John Battle Award for machinery lubrication.

“It’s not only a cost piece, there is a whole asset-management piece and a whole people piece that we have to look at–not just the numbers, the metrics, the bars and charts–it’s the whole thing that makes a facility tick,” she explained. “Reliability isn’t just my job…it is everyone’s job. Every time I get into my car and turn the key, I expect it to come on. Every time I run that piece of equipment, I want it to perform the same way every time. That, to me, is reliability.”

Overbey said reliability is about being tried and true. “It’s predictable. It’s reliable every day. It’s the whole conglomeration of things that is very complicated, yet very simple. When all is said and done, reliability is a huge advantage for a company. You are only spending money when you need to. But it’s very difficult to get there.”

Wenzel said that consistency is a key to reaching reliability goals. Eli Lilly has global quality standards and good manufacturing practices that are applicable to each of the company’s sites across the world.

“Reliability means the equipment is ready each and every time it runs, and it should perform the same way each time,” Krodel said.

Doug Elam is Level 4 vibration certified, which is a rare level of qualification. He works on Overbey’s team and also tried to define reliability. “Reliability is an all-expansive subject that touches on different types of technology, the goal of which is to improve efficiency in machinery performance,” Elam said. “It requires an intense study of the background functions of the machines.”

Eli Lilly and Company uses robots on an assembly line to carefully package its products.

Eli Lilly and Company uses robots on an assembly line to carefully package its products.

Regardless of the definition, reliability for Eli Lilly always circles back to the human element.

“Patients come through and perhaps are on insulin or a certain pill, or a cancer treatment that has changed their lives,” Wenzel explained. “We listen to them, because it’s not just the medicine that matters, but the packaging and ease of use. It puts what we do in perspective. We take this feedback and incorporate it into our designs. It starts with an end user’s idea and need, goes to design, goes through production, then back to the end user. It’s like a circle of life.”

The research is carefully conducted with the end user always in mind.

“A lot of research is done to make the best fit for each subset of people,” Wenzel continued. “And at the end of the day you have a marketable product that you can be proud of. Being on both sides of the business, you understand why medicine is so costly. But when you find the one niche that helps cancer patients, or the kid who is near death, and then you can be a part of developing this medicine that completely changes his life, it just makes it all worthwhile.”

And yes, it’s personal.

“When you know people who use the products,” Wenzel said, “the work you do becomes a part of you.” MT

Michelle Segrest has been a professional journalist for 27 years. She specializes in the industrial processing industries and has toured manufacturing facilities in 40 cities in six countries on three continents. If your facility has an interesting maintenance and/or reliability story to tell, please contact her at michelle@navigatecontent.com.

153

7:03 pm
April 12, 2017
Print Friendly

Human Reliability: More Than Half the Answer

klausblacheBy Dr. Klaus M. Blache, Univ. of Tennessee, Reliability & Maintainability Center

My prescription for achieving reliability incorporates human reliability. This human element consists of people, processes (engineering and machinery/equipment), and products that lead to best practices and customer deliverables. In short, the better you do things, the more availability and throughput you get.

Reliability is about dependable engineering processes that support designing-in and sustaining machinery/equipment (M&E), maintenance practices to enable early detection of issues, and specifications that guide the purchase of maintainable M&E. Aspects to consider include:

  • Accessibility
    • easing access in performing maintenance
    • eliminating the need for special tools to gain access
    • designing out the need to remove components and other items that haven’t failed to get to those that often do fail.
  • Modularity
    • making each equipment module easy to handle by one person
    • ensuring that disposable modules are easy to reach
    • designing out the need to dispose of long-life parts by using disposable parts.
  • Diagnostics
    • capturing enough data for problem analysis
    • analyzing faults and issues down to the component level
    • ensuring that performance data is captured and stored for analysis, supplier feedback, and internal continuous-improvement teams.

To me, maintainability refers to the “ease and speed of maintenance to return the system (people, process, machinery/equipment, and product) back to its original operating condition.” Maintenance is the repairing or servicing of a product or machinery/equipment. Maintainability is a design parameter (like the preceding examples) to minimize or optimize repair time.

Unfortunately, research shows that human error is still occurring at a high rate. Failure-rate studies have found that more than 50% of all equipment fails prematurely after maintenance work has been performed on it. This has been evidenced in many types of equipment systems and organizations. To better understand how human performance influences risk associated with nuclear power plant operations, the U.S. Nuclear Regulatory Commission (NRC) requested a study (INEEL/EXT-01-01166) that showed the average human-error contribution to the increase in risk was 62%. In the same study, maintenance practices and maintenance-work control errors were evident in 76% of the events, and operations errors were present in 54%.

What can be done? For new M&E, there’s an opportunity to design-in numerous maintainability concepts. More opportunity, however, is in existing facilities. A good first step would be to perform a PM Optimization (PMO) to eliminate any unnecessary tasks and related interventions.

A PMO will pinpoint if the M&E requires further design review, changes, and frequency in how those reviews are performed, or if they should be eliminated. Mature operations have lots of mistake-proofing and visual controls for operations. This technique should be expanded to include maintenance to support maintainability needs and reduce availability risk.

Human reliability is related to the field of human factors (ergonomics), which refers to designing work areas, work practices, and workflow to accommodate the capabilities of people (operators and maintainers). These factors can’t be ignored. This applies to all types of industries. According to the Occupational Safety & Health Administration (OSHA), 30% to 50% of your recordable injuries are somehow related to ergonomics.

Understanding and instilling human reliability, in turn, is the key in interconnecting the daily functional links to reliability and maintenance that drive real-world outcomes in availability. And it’s more than half of the answer. MT

Based in Knoxville, Klaus M. Blache is director of the Reliability & Maintainability Center at the Univ. of Tennessee, and a research professor in the College of Engineering. Contact him at kblache@utk.edu.

Navigation