Archive | Ultrasound Analysis


8:01 pm
April 13, 2017
Print Friendly

Listen Up: Stop Lube-Related Bearing Failures

Ultrasound technology can help reduce bearing and equipment failures associated with improper lubrication procedures.

Ultrasound technology can help reduce bearing and equipment failures associated with improper lubrication procedures.

Regardless of industry sector, lubrication methods are crucial to plant reliability and maintenance efforts. Consider the fact that lube-related failures account for 60% to 80% of premature bearing failures. While lack of lubrication and use of the wrong lubricant for an application have been cited as major causes of such failures, over- and under-lubrication are also harmful. Preventing those last two scenarios is one area where ultrasound technology can play an important role.

— Jane Alexander, Managing Editor

According to UE Systems (Elmsford, NY), by using an ultrasound instrument to listen to a bearing while applying lubricant and then monitor, i.e., watch, the decibel level, a technician can determine when adequate grease has been applied and, just as important, the threshold at which over-lubrication begins.

In short, when bearings aren’t lubricated properly, friction can cause damage and threaten processes. Ultrasound equipment can read the decibel levels of over- and under-lubricated bearings and indicate to maintenance personnel if adjustments are in order. Consistent dB levels let a technician know that the level of lubrication is where it should be.

Experts at UE Systems describe three tiers of acceptable lubrication practices and where ultrasound technology fits into them.

randmGood practice

The baseline lubrication practice is to follow the bearing manufacturer’s recommendations to determine the exact amount of lubrication necessary based on bearing size, speed, and type, and rely on runtime and operating conditions to develop a lubrication schedule. While “good” is a starting place, there is room to improve.

Better practice

The next level uses ultrasound equipment for more exact lubrication procedures. These tools tell maintenance technicians when to stop lubricating a bearing, rather than hoping the schedule is accurate and guessing at bearing condition. Ultrasound can also inform technicians if there are other problems with the bearing, unrelated to lubrication.

Best practice

A best lubrication practice is to combine a frequency schedule and ultrasound tools with data collection and trend analysis. By examining the history of lubrication with dB levels and other sound files, maintenance technicians can begin to predict when bearings may be approaching failure and take preemptive action. Alarm levels can be set to alert technicians when lubrication is approaching dangerously low levels.

The best ultrasound programs allow easy integration of data analysis with probes, listening devices, and lubrication tools. MT

How Ultrasound Technology Works

Air- and structure-borne ultrasound is high-frequency sound that human ears can’t hear. These high-frequency sounds travel through the air or by way of a solid. The ultrasound instrument senses and listens for the high-frequency sound, and then translates it into an audible sound that is heard through the inspector’s headset. The unit of measurement for sound is a decibel (dB) level, which is indicated on the display of the ultrasonic instrument.

Ultrasound can be used in conjunction with (and is supportive of) vibration analysis and other predictive-maintenance approaches. In addition to mechanical inspections of rotating equipment and associated condition-based lubrication programs, applications for ultrasound include detection of compressed air and gas leaks; inspection of energized electrical equipment to detect corona, tracking, and arcing; and inspection of steam traps.

For more ultrasound information and to download a printable infographic on “3 Ways to Incorporate Ultrasound in Lubrication Testing,” visit


4:15 pm
April 13, 2017
Print Friendly

Reliability Changes Lives

Using skilled technicians and advanced technology, Eli Lilly and Company creates life-saving medicines and devices worldwide.

By Michelle Segrest, Contributing Editor

Throughout the halls of the Indianapolis Eli Lilly and Company facility, the corporation's brand is proudly displayed. All photos courtesy of Eli Lilly and Company.

Throughout the halls of the Indianapolis Eli Lilly and Company facility, the corporation’s brand is proudly displayed. All photos courtesy of Eli Lilly and Company.

At Eli Lilly, the motivation to improve production reliability is not just something that is tracked on graphs and charts for upper management to review. In fact, for maintenance and reliability engineer Carrie Krodel, it’s personal.

Krodel, who is responsible for maintenance strategies at the Eli Lilly Indianapolis facility’s division that handles Parenteral Device Assembly and Packaging (PDAP), has a family member who uses the company’s insulin. “I come to work every day to save his life,” she said. “Each and every one of us plays a part with reliability. Whether it’s the mechanics or the operators keeping the line running, the material movers supplying the lines with the products, or the people making the crucial quality checks, everyone is a part of it. And we all know that the work we are doing is changing lives.”

The Indianapolis site covers millions of square feet with nearly 600,000 assets that must be maintained. According to Rendela Wenzel, Eli Lilly’s global plant engineering, maintenance, and reliability champion, the company produces the medicine as well as the packaging for insulin pens, cancer treatments, and many other products and devices.

For the entire Eli Lilly team—which includes a group of about 80 engineers at the Indianapolis site—the responsibility is crucial. “If we mess up, someone gets hurt,” Wenzel said. “This is a big responsibility.”

However, it’s the human element of this responsibility that inspires an exceptional level of quality.

Team, tools, training

Screen Shot 2017-04-13 at 11.03.07 AMWayne Overbey, P.E., is the manager of the Maintenance-Manufacturing Engineering Services department. He said his team of seven maintenance technicians uses three primary technologies every day to keep the machines running—vibration analysis, oil analysis, and infrared technology. With a focus on condition-based monitoring, each team member has an area of responsibility to collect and analyze vibration data. In addition to the vibration data collector, each team member carries a small infrared camera to make heat-signature images used to diagnose and troubleshoot rotating-equipment problems.

The team also uses a digital microscope that can zoom to 3500X magnification. This helps them look closely at a bearing race, cage, and rolling elements and see what caused a failure, whether structural, corrosion-based, or failed lubrication. In addition, the group has an oil laboratory that can analyze oil and grease. 

The team performs more than 7,000 measurements on more than 4,000 rotating/reciprocating machines and performs vibration analysis on those machines monthly, Wenzel stated. The level of qualified individuals is high. “Anything that is process related, we have the equipment to look at it and analyze it,” she said. “We have people with ISO 18436-2 Cat 2 and Cat 3 verifications and even one expert with an ISO18436-2 Cat 4 certification, and there are fewer than 100 people globally with that level of certification. These guys are experienced, high-level certified professionals.”

The maintenance team increased its level of performance more than five years ago when it made the strategic decision to outsource the facilities (buildings and grounds) portion of maintenance. With about 220 maintenance professionals companywide at the Indianapolis facility, this allowed the team to focus more on production and analysis rather than the facilities, Overbey said.

The team has sophisticated data-collection routes set up as PMs and also focuses heavily on maintenance training.

“We have a difficult time finding people interested in maintenance,” Overbey said. “We have a strategic program to train people that takes 18 months to 2 years. When I was growing up, being an electrician or mechanic was a fine career, but now the attitude is that you have to have a college degree to be successful. Most of our crafts people here make more than the average liberal-arts major. As we cycle out the baby boomer work force, we need to find new talent and close the gap.”

Wenzel agreed that finding qualified crafts people has been a focus that has helped Eli Lilly in its drive for reliability.

“Wayne saw the need and developed an excellent program,” she said. “Management is supportive. He is training them and then sending them to get experience while they are going to school.”

The program is responsible for hiring 24 trainees, to date, and has been able to place 18 of them in full-time positions within Lilly maintenance groups. The remaining six trainees are still in the initial stage of the program. The training also uses basic maintenance programs provided by Motion Industries and Armstrong. Last year, there were more than 30 well-attended training classes focused on equipment used at Lilly. The company wants the training to be relevant to what the maintenance technicians perform on a daily basis.

“The whole condition-based platform makes us unique,” Wenzel said. “We have all the failure-analysis competencies. It’s a one-stop shop. We provide two-to-three day courses on condition-based technologies for crafts and engineers. The whole understanding, as far as what maintenance and reliability can do, is to increase wrench time and uptime. We are all seeing an uptake in technology.”

The Indianapolis Eli Lilly facility has more than 600,000 assets that must be maintained by its experienced engineering-services team.

The Indianapolis Eli Lilly facility has more than 600,000 assets that must be maintained by its experienced engineering-services team.

Best practices

Overbey stated that his main responsibility is to help the various site-maintenance groups improve uptime by using diagnostic tools to identify root causes of lingering problems. With a focus on training paying dividends, he said the high-quality people are what make the condition-based monitoring team successful.

The team works with the site-maintenance groups to reduce unexpected failures, so increased time can be focused on preventive maintenance. “We look at our asset-replacement value as a function of our total maintenance scheme,” Wenzel said. “We look at recapitalization and make sure we are reinvesting in our facility. We keep track of where we are with proactive maintenance. Those numbers are tracked facility to facility and then rolled into a global metric.”

Vibration analysis and using infrared technology has become a central part of the department’s reliability efforts.

“These guys have taken responsibility for the failure-analysis lab and taken it on as an added-value service,” Wenzel said. “For example, if there is a failed bearing, they take it out, cut it up, and provide a report that goes back to management. If we make a call that a piece of equipment has increased vibration levels and is on the path to failure, based on the vibration data collected, getting those bearings goes a long way in getting site buy-in when the actual bearing problem can be visually observed. Most individuals are skeptical when shown the vibration waveform (squiggly lines), seeing the bearing with the anomaly is the true test of obtaining their buy in.”

“We can compete with anyone in terms of oil analysis,” Wenzel added. “We can identify particles and have switched to synthetics. For example, when oil gets dirty, it becomes acidic. Something slightly acidic can be more harmful than something that is highly acidic because it will just continue to eat away at the material and cause significant damage before you can stop it. Something slightly acidic can really tear up bearings. The FluidScan 1100 can detect that.”

Screen Shot 2017-04-13 at 11.03.19 AM

More than 80% of the oil samples are now handled internally, Wenzel said. “As we are selling all of these capabilities to the PdM team around the world, we are starting to look at some of the potential issues at other facilities to provide extra analysis with this condition-based maintenance group,” she said. “We are sharing good ideas and processes across facilities. We now have a maintenance and reliability community.”

Eli Lilly employs Good Manufacturing Practices (GMP) and the use of many chemicals requires a high level of cleanliness that is checked daily and regulated by government bodies.

Changeovers can often take weeks. “We check everything,” Wenzel said. “There is very involved and stringent criteria for how we clean a building. Regulations are a challenge, but they keep you on your toes. You don’t even notice it anymore because it becomes a part of what you do. It doesn’t faze the day-to-day thinking.”

The precision and accuracy of the facility's manufacturing equipment contributes to its product excellence.

The precision and accuracy of the facility’s manufacturing equipment contributes to its product excellence.

Operational excellence

Eli Lilly works with cross-functional teams in which maintenance, engineering, and operations are working on the overall process. Operations manager Jason Miller is responsible for running the process. Maintenance corrects the issues and performs preventive maintenance to get ahead of equipment failures and prevent unplanned downtime.

“Anytime we have an equipment failure we evaluate what happened and see what process we can put in place to get ahead of those things,” Miller said. “Line mechanics are on each shift and work with our line operators to understand and troubleshoot issues. We get ahead of issues to ensure [there is] no impact to the quality of our process.

With advanced robotics and a large amount of automation, monitoring performance and quality is key to successful operation and production, Miller stated. “Everything is captured, including downtime and rejects,” he explained. “We identify corrective actions at every morning meeting. We use the data on the line to drive improvement. The line is automated, but if there is a reject every 100 cycles, we need to take action. The robotics never stop. If you see overloads or rejects over time, this tells you about mechanical wear and other issues with the equipment. We drive data-driven decisions for maintenance.”

The preventive maintenance includes lubricating linear slides each month. When vibration is detected, adjustments are made immediately. “The machines tell us what’s going on. We just have to know how to read them,” Miller said. “We have manual and visual quality checks, but the machines also do quality checks. Reliability is critical because when patients are waiting on their medicine, the machines have to run the way they are supposed to run all the time. We have standards, and they have to be precise. This is medicine going into someone’s body. We are the last step of the process. It has to be packaged and labeled correctly, as well.”

Mike Campbell is the maintenance planner and scheduler for PDAP and has developed a system in which all preventive maintenance is performed during scheduled shutdowns.

“We develop a schedule with every piece of equipment and every scheduled PM associated with it,” Campbell said. “One line may have 50 to 60 PM work orders to perform during the week of the scheduled line shutdown. We bring in a lot of resources to do it all at once, typically requiring a day shift and a night shift.”

Advanced production technology is critical to the standard of reliability excellence.

Advanced production technology is critical to the standard of reliability excellence.

Changing lives with reliability

Wenzel said that looking at how each department interacts helps to put all the pieces of the reliability puzzle together. They have even received outside recognition of their practices in Indianapolis. In 2008, The Corporate Lubrication Technical Committee, of which Wenzel is the chair, won the ICML John Battle Award for machinery lubrication.

“It’s not only a cost piece, there is a whole asset-management piece and a whole people piece that we have to look at–not just the numbers, the metrics, the bars and charts–it’s the whole thing that makes a facility tick,” she explained. “Reliability isn’t just my job…it is everyone’s job. Every time I get into my car and turn the key, I expect it to come on. Every time I run that piece of equipment, I want it to perform the same way every time. That, to me, is reliability.”

Overbey said reliability is about being tried and true. “It’s predictable. It’s reliable every day. It’s the whole conglomeration of things that is very complicated, yet very simple. When all is said and done, reliability is a huge advantage for a company. You are only spending money when you need to. But it’s very difficult to get there.”

Wenzel said that consistency is a key to reaching reliability goals. Eli Lilly has global quality standards and good manufacturing practices that are applicable to each of the company’s sites across the world.

“Reliability means the equipment is ready each and every time it runs, and it should perform the same way each time,” Krodel said.

Doug Elam is Level 4 vibration certified, which is a rare level of qualification. He works on Overbey’s team and also tried to define reliability. “Reliability is an all-expansive subject that touches on different types of technology, the goal of which is to improve efficiency in machinery performance,” Elam said. “It requires an intense study of the background functions of the machines.”

Eli Lilly and Company uses robots on an assembly line to carefully package its products.

Eli Lilly and Company uses robots on an assembly line to carefully package its products.

Regardless of the definition, reliability for Eli Lilly always circles back to the human element.

“Patients come through and perhaps are on insulin or a certain pill, or a cancer treatment that has changed their lives,” Wenzel explained. “We listen to them, because it’s not just the medicine that matters, but the packaging and ease of use. It puts what we do in perspective. We take this feedback and incorporate it into our designs. It starts with an end user’s idea and need, goes to design, goes through production, then back to the end user. It’s like a circle of life.”

The research is carefully conducted with the end user always in mind.

“A lot of research is done to make the best fit for each subset of people,” Wenzel continued. “And at the end of the day you have a marketable product that you can be proud of. Being on both sides of the business, you understand why medicine is so costly. But when you find the one niche that helps cancer patients, or the kid who is near death, and then you can be a part of developing this medicine that completely changes his life, it just makes it all worthwhile.”

And yes, it’s personal.

“When you know people who use the products,” Wenzel said, “the work you do becomes a part of you.” MT

Michelle Segrest has been a professional journalist for 27 years. She specializes in the industrial processing industries and has toured manufacturing facilities in 40 cities in six countries on three continents. If your facility has an interesting maintenance and/or reliability story to tell, please contact her at


8:24 pm
February 9, 2017
Print Friendly

Listen for Impact

Above. Josh Mattson's desktop computer screen displays dB data collected from ultrasound probes that feed software to generate an oil-analysis report. Oil analysis has become a big part of reliability best practices at USG Interiors by providing insight as to when to filter oil, change oil, identify early signs of failure, or use to assist in analyzing data from other technologies such as ultrasound or vibration monitoring.

Josh Mattson’s desktop computer screen displays dB data collected from ultrasound probes that feed software to generate an oil-analysis report. Oil analysis has become a big part of reliability best practices at USG Interiors by providing insight as to when to filter oil, change oil, identify early signs of failure, or use to assist in analyzing data from other technologies such as ultrasound or vibration monitoring.

Josh Mattson drives key reliability programs using ultrasound and root-cause analysis. Continue Reading →


8:18 pm
August 6, 2015
Print Friendly

Ultrasound: Aural Intelligence


A recent three-day conference that connected ultrasound experts with maintenance professionals delivered some key points about this predictive technology.

By Rick Carter, Executive Editor

The ranks of those who use ultrasound for predictive-maintenance purposes are growing. The trend is evident on factory floors and at conferences devoted to the technology, such as UE Systems’ ( recent 11th annual Ultrasound World/Reliable Asset World event. Held in June 2015, in Clearwater Beach, FL, a record number of attendees was treated to presentations that blended detailed information about ultrasound usage with practical perspectives on how ultrasound fits with efforts to build and maintain reliability-based cultures.

Two standout presentations—“Using Ultrasound for Effective Slow-Speed Bearing Monitoring” by Ron Tangen, maintenance engineering specialist, Dakota Gasification Co., Beulah, ND; and “Utilizing Ultrasound as a Foundational Technology When Embarking on a Reliability Transformation” by Mike Casey, reliability engineer, Mueller Co., Chattanooga, TN—were excellent examples of the experienced-based information Ultrasound World promised and provided.

A UE Systems Ultraprobe 15000 Touch ultrasound gun is used to monitor an internal bearing. This unit includes an on-board camera, infrared thermometer, laser pointer, and the ability to store data, sounds, and images.

A UE Systems Ultraprobe 15000 Touch ultrasound gun is used to monitor an internal bearing. This unit includes an on-board camera, infrared thermometer, laser pointer, and the ability to store data, sounds, and images.

Ultrasound for slow-speed applications

Ron Tangen’s presentation focused on how his efforts to predict bearing failures at Dakota Gasification Co.—owner and operator of  the Great Plains Synfuels Plant in Beulah, the only commercial-scale facility in the U.S. that manufactures natural gas from coal—led him to ultrasound for slow-speed applications. Though his team now uses ultrasound for many applications in the plant, before its widespread use, ongoing failure issues with the plant’s many slow-speed bearings on coal-handling conveyors had been a problem.

“Operators would walk around on a weekly basis and listen and look at these bearings,” said Tangen. “If they felt there was a problem they would also touch them and maybe use a hand-held, infrared pyrometer to check temperature. But this predictive-maintenance strategy is at the bottom of the PF curve [a designator of the interval between “P—potential failure” and “F—failure”]. And, while they did find problems and got some bearings out of the system before they catastrophically failed, being so close to the end of the PF curve, they would often get done with a route and a few days later have a catastrophic failure.”

Tangen discussed the issue with the plant’s rotating-equipment engineers. “They have a robust vibration program,” he said, which worked well on high-speed bearings, but not on slow-speed. With infrared nearly as ineffective, Tangen turned to ultrasound and tested his idea. When the results proved positive, he established routes that took ultrasound-equipped operations team members to the conveyors’ many slow-speed bearings—bearings whose problems had been previously undetectable prior to failure with infrared or vibration due to their slow speeds. “Now that we’ve been doing this for five years, and after listening to a few thousand bearings,” he said, “you start to see the patterns.”

The results of routine ultrasound testing include hard-to-refute sound files of bearing disintegration. “I first thought I could give a two-week or two-month heads-up on catastrophic failures,” said Tangen, “but the ultrasound technology is sensitive enough that you can track a bearing fault through its lifetime.” By plotting the decibel readings for each given bearing and, as they accumulate, drawing a straight line through the points, he can “normalize” the data to provide an overall direction for the readings. “This enables me to project where I can potentially expect that bearing to be over time,” he said. “Right now I’m beginning to look at bearings we’ll need to pull in 2016.”

Tangen has reluctantly accepted that he’s viewed by some colleagues as having crystal-ball talents. “If you tell a lot of people that you’re predicting slow-speed bearing failures a year in advance, they might think you’re a little crazy,” he said. But they clearly like his information. In a recent meeting with operations and maintenance leaders, Tangen said “the only thing they wanted more of was my predictive report.” They asked if his standard 12-month view of predicted bearing failures could be shortened to quarterly to allow for better planning. “I’m not quite at that point yet,” said Tangen, “but I thought it was a positive note that they have seen enough value in the program to where they want more data more often.”

Ultrasound audio files show the difference in sound emitted by a good bearing (top), and a bearing that is failing.

Ultrasound audio files show the difference in sound emitted by a good bearing (top), and a bearing that is failing.

Ultrasound and reliability

For presenter Mike Casey, who came to Mueller Co. in 2012 from Allied Reliability Group, Charleston, SC, ultrasound was a key part of his task to establish a reliability-based culture at his new company, a maker of water-distribution products. “It was difficult knowing where to start,” he said. “When I got here we had an ultrasound gun that was used, maybe not correctly, and it needed to be upgraded. So I had two elements to work with: I had to get the funds for an upgraded model and I needed to have the people ready to use it and want to use it. I had to have more than a work order that said ‘listen.’ I needed them to go find things.”

His plan involved getting multiple members of his maintenance crew trained to use the company’s existing ultrasound gun. “Any win we could get with that would be beneficial in my request for a new unit,” he said.

Casey built on an earlier approach undertaken at the plant that had used an outside service to identify and tag compressed-air-system leaks. He trained his team to detect those types of leaks, and distinguish them from other sounds in the plant, particularly those of intentional “leaks” where compressed air is used to blow off or move material.

“I felt comfortable training them,” said Casey, who is also a Level 3 vibration analyst, “but it’s worth every penny to send that person to the OEM [for training]. It also depends on finding the right person. You can put an ultrasound gun in anyone’s hands and they can use it, but you really need that person who is interested and wants to do it. This is not necessarily the most senior guy,” he added. “The process can be grueling. It’s hot, walking, climbing. You need someone who is willing to do all of that. I would caution against randomly picking somebody and hoping for the best. You have to roll it out correctly and get the training. There will be missed calls—these aren’t crystal balls—but if you can minimize those, the technology and the program has a chance.”

It also helps that ultrasound (like infrared) comes with a powerful sensory impact. While vibration plots can “make some people’s eyes glaze over,” said Casey, “if I can show someone a colored picture that shows a temperature differential or have them listen to a sound file and actually take them to the equipment and have them put on the headphones and listen to this and demonstrate what’s going on, that’s where these technologies allow for faster buy-in. It’s more tangible, and I can make the point a lot quicker.”

Casey’s efforts to convince his management of the need to upgrade its ultrasound equipment were successful and not as difficult to achieve as he had expected them to be. “I did go with my guns loaded—I had those findings in my back pocket—but I probably could have sold it without them because the company knew they had to spend some money to get a program going. Like most companies, though, I think they didn’t know how much they had to spend or what they had to do. There was a corporate openness to getting these tools in the house, but you had to maybe put someone like me in there to make it work.”

Casey offered other suggestions for those looking to start or expand an ultrasound program. “Don’t be afraid to experiment,” he said. “Get the training and let that person go. That’s how I found some of the unique applications I did, just going out there and asking, ‘What is this supposed to sound like?’ It’s about identifying issues. The whole idea behind ultrasound is to identify problems ahead of time and come up with ways to eliminate them forever. You need to capture that data, learn how that failure was caused, and eliminate it.”

Casey’s ultrasound program has improved his company’s uptime and maintenance success. “But we still have to make product, which still produces emergency work, so it’s a juggling act,” he said. “That’s why these programs take time to mature. But when management sticks by them, and they give it time, we get our wins and we brag about them. And that’s another important piece of programs like this. You have to brag. You have to advertise those gains. You have to let them know.”

The 2016 UE Systems Ultrasound World/Reliable Asset World event is scheduled for May 10 to 13 in Clearwater Beach, FL. MT

0815ultrasound4If ultrasound is new to you, visit the Resource section of the UE Systems Inc. website at to learn the basics. Pay particular attention to the Sound Recording Library in which you can hear the sounds made by various devices in good and/or failing condition.

Ultrasound: A Multi-Use Industrial Technology

Ultrasound—literally “beyond sound”—refers to acoustic (sound) energy in the form of waves with frequencies above 20,000 Hz, the highest frequency to which the human ear can respond. In addition to its use for predictive-maintenance purposes, ultrasound has many other industrial uses, especially in processing applications. These include:

  • Cleaning of equipment and process material
  • Cutting
  • De-foaming
  • De-gassing
  • De-scaling of plant equipment, evaporators, or pipework
  • De-watering/drying
  • Extrusion
  • Fermentation
  • Filtration
  • High-shear mixing
  • Liquid/solid separation and dispersion
  • Nanotechnology
  • Particle de-agglomeration
  • Sieving
  • Spraying/spray drying/atomization
  • Waste/sludge effluent treatment
  • Welding.